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Defining	a	programming	language	(1/2)
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Defining	a	programming	language	(2/2)

Syntax

Semantics
What	operation	does	a	SELECT	do?
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Formal	Grammar
Defined	by	G=(N,	Σ,	P,	S):

A	finite	set	N	of	nonterminal	symbols

A	finite	set	Σ	of	terminal	symbols,	disjoint	from	N

A	finite	set	P	of	production	rules,	each	of	the

form

A	start	symbol	S	∈	N
<digit>	::=	'0'	|	'1'	|	'2'	|	'3'	|	'4'	|	'5'	|	'6'	|	'7'	|	'8'	|	'9'

<integer>	::=	['-']	<digit>	{<digit>}
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Context-Free	Grammar
Defined	by	G=(N,	Σ,	P,	S):

A	finite	set	N	of	nonterminal	symbols

A	finite	set	Σ	of	terminal	symbols,	disjoint	from	N

A	finite	set	P	of	production	rules,	each	of	the

form

A	start	symbol	S	∈	N
<digit>	::=	'0'	|	'1'	|	'2'	|	'3'	|	'4'	|	'5'	|	'6'	|	'7'	|	'8'	|	'9'

<integer>	::=	['-']	<digit>	{<digit>}
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LR(k)	Parser

LR	parser	has	a	stack	and	input

It	uses	two	operations:	shift	and

reduce

It	builds	a	parse	tree
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LR(k)	Parser	-	Example
Grammar:
E↦int

E↦(E)

E↦E+E

Stack:

E

Input:

Next	action:
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LR(1)	and	Chomsky	Normal	Form	Grammar

A	Chomsky	Normal	Form	Grammar	is	a

CFG	such	as,	the	production	rules	have	the

form

Any	CFG	can	be	transformed	into	a	CFN

Most	generated	parser	use	a	variant	of

LR(1)	which	is	defined	from	a	CNF
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Abstract	Syntax	Tree
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Semantic
The	grammar

defines	what	is	valid

or	not
(3+4)+(5+6)
3+)(+6)

The	semantic

defines	what	is	the

expected	result
18

Classification	of	programming	languages
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Classification	of	programming	languages
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Limitation	of	a	paradigm	classification



The	different	programming	paradigms
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Creative	extension	principle

No	exceptions With	exceptions
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Declarative

Expresses	logic	of	computation

without	control	flow:
What	should	be	computed	and	not	how	it	should

be	computed.

Examples:	XML/HTML,	antlr4/yacc/

regular	expressions,	make/ants,	SQL,

...
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Declarative	-	Examples

<b>Hello	world!Hello	world!</b>

grammar	Hello;

r			:	'hello'	ID;

ID		:	[a-z]+	;

WS		:	['	'\t\r\n]+	->	skip	;
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Functional

Computation	are	treated	as

mathematical	function
without	changing	any	internal	state

Examples:	Lisp,	Scheme,	Haskell...
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Functional	-	Examples

->	(1	4	9	16	25	36	49	64	...	576	625)
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Imperative

Express	how	computation	are

executed
Describes	computation	in	term	of	statements	that

change	the	internal	state

Examples:	C/C++,	Pascal,	Java,

Python,	JavaScript...
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Imperative	-	Examples
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Object-Oriented

Based	on	the	concept	of	objects,

which	are	data	structures	containing

fields	and	methods
Programs	are	designed	by	making	objects

interact	with	each	others

Examples:	C++,	Java,	C#,	Python,

Ruby,	JavaScript...
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Object-Oriented	-	Programming
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Logic	and	symbolic

Logic
Based	on	Formal	logic:	expressing	facts	and	rules

Symbolic
A	program	can	manipulate	its	own	formulas	and

components	as	if	they	are	data

Example:	prolog
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Logic	programming
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Symbolic	programming
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Constraint	Programming

Constraint
A	relation	between	two	variables	are	stated	in	the

form	of	a	constraint	(can	be	logic	or	numerical)

Example:	Oz	(functional),

Kaleidoscope	(imperative),	Prolog

(logic)
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Constraint	Programming	-	Examples

local

		proc	{MyScript	Solution}

					X	=	{FD.int	1#10}

					Y	=	{FD.int	1#10}

					Z	=	{FD.int	1#10}

		in

					Solution	=	unit(x:X	y:Y	z:Z)

					X	+	Y	=:	Z

					X	<:	Y

					%%	search	strategy

					{FD.distribute	naive	Solution}

		end

in

		{Browse	{SearchAll	MyScript}}

end



Why	different	paradigms?
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Is	there	a	paradigm	to	rule	them	all?

In	theory	you	can	program

everything	in	C/C++	and	imperative

programming,	or	functional

programming...

But	is	that	convenient?

And	is	that	safe?
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Functional	vs	Imperative

Double	all	the	numbers	in	an	array

Imperative:

Functional:
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Declarative	vs	Imperative
Select	all	the	dogs	that	belongs	to	a	specific	owner

Declarative:

Imperative:



Introduction	to	KL
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Kernel	Language

Kernel	language:	is	the	minimal

language	that	you	need	for	a	given

paradigm

Define	a	mapping	between	a	full

programming	language	into	the

kernel	language
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KL
Practical	language

Kernel	language

Practical	language
Provides	usefull	abstractions

for	the	programmer

Can	be	extended	with

linguistic	abstractions

Kernel	language
Easy	to	understand	and

reason

Has	a	precise	(formal)

semantic
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KL
KL	is	a	Kernel	Language

You	will	be	developing	its	interpreter	during

the	labs

Written	in	RPython

It	is	defined	as:
syntax:	inspired	C/JavaScript

semantic:	+procedure+closure+cell

In	the	future,	based	on	the	idea	of	adding	concepts

Mapping	through	a	macro	system	(lecture	14)
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Syntax
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Modules
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Conclusion

Definition	of	a	programming

language

Defining	the	semantinc	using

programming	paradigms

classification

KL


