
TDDA69	Data	and	Program	Structure

Concepts	and	models	of	programming	languages
Cyrille	Berger

2	/	43

Lectures
1Introduction

2Concepts	and	models	of	programming	languagesConcepts	and	models	of	programming	languages

3Declarative	Computation	Model

4Declarative	Programming	Techniques

5Declarative	Computation	Implementation

6Declarative	Concurrency

7Message	Passing	Concurrency

8Explicit	State	and	Imperative	Model

9Imperative	Programming	Techniques

10Imperative	Programming	Implementation

11Shared-State	Concurrency

12Relational	Programming

13Constraint	Programming

14Macro

15Running	natively	and	JIT

16Garbage	Collection

17Summary

3	/	43

Lecture	content

Defining	a	programming	language

Classification	of	programming

languages

The	different	programming

paradigms

Why	different	paradigms?

Introduction	to	KL

Defining	a	programming	language

5	/	43

Defining	a	programming	language	(1/2)

6	/	43

Defining	a	programming	language	(2/2)

Syntax

Semantics
What	operation	does	a	SELECT	do?

7	/	43

Formal	Grammar
Defined	by	G=(N,	Σ,	P,	S):

A	finite	set	N	of	nonterminal	symbols

A	finite	set	Σ	of	terminal	symbols,	disjoint	from	N

A	finite	set	P	of	production	rules,	each	of	the

form

A	start	symbol	S	∈	N
<digit>	::=	'0'	|	'1'	|	'2'	|	'3'	|	'4'	|	'5'	|	'6'	|	'7'	|	'8'	|	'9'

<integer>	::=	['-']	<digit>	{<digit>}

8	/	43

Context-Free	Grammar
Defined	by	G=(N,	Σ,	P,	S):

A	finite	set	N	of	nonterminal	symbols

A	finite	set	Σ	of	terminal	symbols,	disjoint	from	N

A	finite	set	P	of	production	rules,	each	of	the

form

A	start	symbol	S	∈	N
<digit>	::=	'0'	|	'1'	|	'2'	|	'3'	|	'4'	|	'5'	|	'6'	|	'7'	|	'8'	|	'9'

<integer>	::=	['-']	<digit>	{<digit>}

9	/	43

LR(k)	Parser

LR	parser	has	a	stack	and	input

It	uses	two	operations:	shift	and

reduce

It	builds	a	parse	tree

10	/	43

LR(k)	Parser	-	Example
Grammar:
E↦int

E↦(E)

E↦E+E

Stack:

E

Input:

Next	action:

11	/	43

LR(1)	and	Chomsky	Normal	Form	Grammar

A	Chomsky	Normal	Form	Grammar	is	a

CFG	such	as,	the	production	rules	have	the

form

Any	CFG	can	be	transformed	into	a	CFN

Most	generated	parser	use	a	variant	of

LR(1)	which	is	defined	from	a	CNF

12	/	43

Abstract	Syntax	Tree

13	/	43

Semantic
The	grammar

defines	what	is	valid

or	not
(3+4)+(5+6)
3+)(+6)

The	semantic

defines	what	is	the

expected	result
18

Classification	of	programming	languages

15	/	43

Classification	of	programming	languages

16	/	43

Limitation	of	a	paradigm	classification

The	different	programming	paradigms

18	/	43

Creative	extension	principle

No	exceptions With	exceptions

19	/	43 20	/	43

Declarative

Expresses	logic	of	computation

without	control	flow:
What	should	be	computed	and	not	how	it	should

be	computed.

Examples:	XML/HTML,	antlr4/yacc/

regular	expressions,	make/ants,	SQL,

...

21	/	43

Declarative	-	Examples

Hello	world!Hello	world!

grammar	Hello;

r			:	'hello'	ID;

ID		:	[a-z]+	;

WS		:	['	'\t\r\n]+	->	skip	;

22	/	43

Functional

Computation	are	treated	as

mathematical	function
without	changing	any	internal	state

Examples:	Lisp,	Scheme,	Haskell...

23	/	43

Functional	-	Examples

->	(1	4	9	16	25	36	49	64	...	576	625)

24	/	43

Imperative

Express	how	computation	are

executed
Describes	computation	in	term	of	statements	that

change	the	internal	state

Examples:	C/C++,	Pascal,	Java,

Python,	JavaScript...

25	/	43

Imperative	-	Examples

26	/	43

Object-Oriented

Based	on	the	concept	of	objects,

which	are	data	structures	containing

fields	and	methods
Programs	are	designed	by	making	objects

interact	with	each	others

Examples:	C++,	Java,	C#,	Python,

Ruby,	JavaScript...

27	/	43

Object-Oriented	-	Programming

28	/	43

Logic	and	symbolic

Logic
Based	on	Formal	logic:	expressing	facts	and	rules

Symbolic
A	program	can	manipulate	its	own	formulas	and

components	as	if	they	are	data

Example:	prolog

29	/	43

Logic	programming

30	/	43

Symbolic	programming

31	/	43

Constraint	Programming

Constraint
A	relation	between	two	variables	are	stated	in	the

form	of	a	constraint	(can	be	logic	or	numerical)

Example:	Oz	(functional),

Kaleidoscope	(imperative),	Prolog

(logic)

32	/	43

Constraint	Programming	-	Examples

local

		proc	{MyScript	Solution}

					X	=	{FD.int	1#10}

					Y	=	{FD.int	1#10}

					Z	=	{FD.int	1#10}

		in

					Solution	=	unit(x:X	y:Y	z:Z)

					X	+	Y	=:	Z

					X	<:	Y

					%%	search	strategy

					{FD.distribute	naive	Solution}

		end

in

		{Browse	{SearchAll	MyScript}}

end

Why	different	paradigms?

34	/	43

Is	there	a	paradigm	to	rule	them	all?

In	theory	you	can	program

everything	in	C/C++	and	imperative

programming,	or	functional

programming...

But	is	that	convenient?

And	is	that	safe?

35	/	43

Functional	vs	Imperative

Double	all	the	numbers	in	an	array

Imperative:

Functional:

36	/	43

Declarative	vs	Imperative
Select	all	the	dogs	that	belongs	to	a	specific	owner

Declarative:

Imperative:

Introduction	to	KL

38	/	43

Kernel	Language

Kernel	language:	is	the	minimal

language	that	you	need	for	a	given

paradigm

Define	a	mapping	between	a	full

programming	language	into	the

kernel	language

39	/	43

KL
Practical	language

Kernel	language

Practical	language
Provides	usefull	abstractions

for	the	programmer

Can	be	extended	with

linguistic	abstractions

Kernel	language
Easy	to	understand	and

reason

Has	a	precise	(formal)

semantic

40	/	43

KL
KL	is	a	Kernel	Language

You	will	be	developing	its	interpreter	during

the	labs

Written	in	RPython

It	is	defined	as:
syntax:	inspired	C/JavaScript

semantic:	+procedure+closure+cell

In	the	future,	based	on	the	idea	of	adding	concepts

Mapping	through	a	macro	system	(lecture	14)

41	/	43

Syntax

42	/	43

Modules

43	/	43

Conclusion

Definition	of	a	programming

language

Defining	the	semantinc	using

programming	paradigms

classification

KL

