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Defining a programming language (1/2)

Y
Semantics?*

Debugger

Model checker
Symbolic execution

Verifier

Formal Grammar

Defined by G=(N, 2, B S).
¢ A finite set N of nonterminal symbols
¢ A finite set X of terminal symbols, disjoint from N
¢ Afinite set P of production rules, each of the

form
(Z UJ N)*N(Z uJ N)* —> (Z LJN)*
® Astart symbol SE N
<digit>=='0" | "' | 2" | '3'|'4' | '5' | '6' | '7' | '8 | 'O
<integer> ::=[-'] <digit> {<digit>}

Defining a programming language (2/2)

¢ Syntax
SELECT * FROM table WHERE id=1
SELECT * FROM table WHERE

¢ Semantics
“ What operation does a SELECT do?

Context-Free Grammar

Defined by G=(N, 2, B S).
® A finite set NV of nonterminal symbols
¢ A finite set X of terminal symbols, disjoint from N
¢ A finite set P of production rules, each of the

form
® A start symbol SE N
<digit> ::= IOI | l1l | l2l | l3| | l4| | |5| | |6I | |7l | I8l | I9l
<integer> ::=[-'] <digit> {<digit>}




LR( Parser

E

® Grammar:

® LR parser has a stack and input

E-(E)

EmE+E

® It uses two operations: shift and “ Stack

E

reduce *Input:
® It builds a parse tree et

LR(1) and Chomsky Normal Form Grammar

® A Chomsky Normal Form Grammar is a
CFG such as, the production rules have the

form

A — BC A, B, C e N3
A — a A e IN,a & >

® Any CFG can be transformed into a CFN
® Most generated parser use a variant of
LR(1) which is defined from a CNF




Cemanticr

® The grammar
defines what is valid

or not

(3+4)+(5+6) Classification of programming languages
3+)(+6)

® The semantic

defines what is the

expected result
18
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Classification of programming languages Limitation of a paradigm classification

The blind men
and the elephant

It's a rope!

It's a tree trunk!

Languages Paradigms  Concepts Its @ snakel




(Croativia oavtancinn nrinrcinl,

* No exceptions ® With exceptions
I“"“t“" Lty function f1 -> x1()
set x2 = f2()
if(1x2) { ... } set x2 = f2()

}a'lsex1=... x1 = ...

function 2 -= x2() "

{ function f2 -> x2()
set x3 = f3()

The different programming paradigms $set 13 = 130

else x2 = ..
1 x2 = ..
function f3 -> x3() }
{ .
e function 3 -> x3()
if(!x4) { x3 = null }
else x3 = ...

set x4 = f4()

: =
function f4 -> x4() %x3 ae
{ .
if(valid) { f4 = ... } function f4 -> x4()
else { f4 = null } {
’ if(valid) { f4 = ... }

else { throw Exception() }
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s The principal programming paradigms
m;inx ""More is not better (or worse) than less, just different."

L]
ML,
Data structures only ?‘f"!’ffﬁ“‘f" ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, a a I V
+ procedure i t v1.08 © 2008 by Peter Van Roy

+ cell (state)

® Expresses logic of computation

pr g T programming
+ unification } ' SNOBOL, Icon, Prolog

s iy 8 M without control flow:

ADT
functional

Scheme, ML askell, ML, .
oy g | T , ° What should be computed and not how it should

+ por
T ) e | (channel)

prmng 3 3 | "d;'..aﬂ:y | Java, OCaml b e CO m p U te d .

Prolog, SQL
embeddings
+ solver

Ob;ect—capawny Java, Alice

Weak synchronous

Haskell Declarative ' C l“ L5 Zli ;KL 5 + thread ‘
concurrent 0 Z, ce, N -
s ] s || E les: XML/HTML, antlr4/ /
S];:;:LOGSOIW ngrml:'i‘:z.sz:Rednce - Oz:llice,Cl;rry,Excel, | Xa m p eS' I a n r yacc
S Vi e e N » :
- - - o regular expressions, make/ants, SQL,

+ by—need synchronization

programming + [0;

Lazy :
e 3 FrTime, SL CSP, Occam,
programming i + instantancous computation ulfl’is?l/zs’ Lﬁalslzf{be cee
0z, Alice, Curry 0z, Alice, Curry i | Strong synchronous | tl:lple space (Lin da;) L -
! programming ' SQL embeddings
s o a ‘
— !

Esterel, Lustre, Signal | Dataflow and .
| et Message passing

Unnamed state (seq. or conc.) ‘ RO 2 Named state
1

More declarative } - } - } Less decl




Declarative - Examples Functional

® <p>Hello world!</b>
® SELECT name FROM student
WHERE course eq 'TDDAG9'
® grammar Hello;
r :'hello'ID;
ID :[a-z]+;
WS : [' '\t\r\n]+ -> skip ;

® Computation are treated as

mathematical function
© without changing any internal state

® Examples: Lisp, Scheme, Haskell...

Functional - Examples

® (print "Hello World")

® Express how computation are
® (take 25 (SquareS‘Of executed
(integers))) ° Describes computation in term of statements that
>(1491625364964...576 625)

change the internal state
® Examples: C/C++, Pascal, Java,
Python, JavaScript...




Imperative - Examples Object-Oriented

for(var i=1; i< 26; ++i)

e ® Based on the concept of objects,
console. lo (sq] . . .

o Hnclude mjm_h, which are data structures containing

int main() .

{chgr ch; ﬁe/dsand methOdS
Ega?ﬂ‘énte&c?”f:aCteA\I:ch ey Ein ° Programs are designed by making objects

e o bl et interact with each others
"Brintr(ic is not o vowel Ao, o) ® Examples: C++, Java, C#, Python,

: ;

Ruby, JavaScript...

Logic and symbolic

* #include <iostreans=
class Character : public Symbol ' M
e Logic
I © Based on Formal logic: expressing facts and rules
return ch == | eh == 'A" || ‘e! ch == 'E' || ch == 'i"
|| ch == ‘I' || ch =='c' || che='0' || ch == ‘u* || ch == 'U*; .
e ¢ Symbolic
char m_c;
b ming © A program can manipulate its own formulas and
Shiscom < “Ener a chaaceers o' components as if they are data
Character chi ‘c}
if(ch.isVowel()) " o
: s{d:::on: << ¢ << " 15 a vowel.\n"; EXa m ple. p rOIOg
std::cout is not owel




Logic programming

® likes(mary, food).
likes(mary,wine).
likes(john,wine).
likes(john,mary).

®| ?7- likes(mary,food).
yes.
| 7- likes(john,wine).
yes.
| ?- likes(john,food).
no.

Constraint Programming

Symbolic programming

H T
1= atomic(C).

d( sin(w), X,
d{ W, X, 7)

d{ exp(W), X,
di W, X, Z)

7. d(cos(2*X+1
what = Z#sin(2+#X+1

Constraint Programming - Examples

Z*cos(W) ):-

Z*exp(W) ):-

), X, what)
)

¥ d(X) w.r.t. Xis 1 LFf
/* If C is a constant */
/* then d(C)/dX is @ */
/* d(U+V)/dX = A+B where */
/¥ A =d(U)/dX and =

/* d(sin(W))/dX = Z*cos(W) */

/* where Z = d(W)/dX *f
/* dlexp(W))/dX = Z*exp(W) e
/* where Z = d(W)/dX *f

® Constraint

© A relation between two variables are stated in the
form of a constraint (can be logic or numerical)

® Example: Oz (functional),
Kaleidoscope (imperative), Prolog

(logic)

oo

local
proc {MyScript Solution}
X={FD.int 1#10}
Y = {FD.int 1#10}
Z={FD.int 1#10}

in
Solution = unit(x:X y:Y z:2)

X+Y=2Z

X<y

%% search strategy

{FD.distribute naive Soluti
end

in
{Browse {SearchAll MyScrip
end

oo

ion}

it}



Why different paradigms?
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Functional vs Imperative

[s there a paradigm to rule them all?

® In theory you can program
everything in C/C++ and imperative

programming, or functional
programming...
® But is that convenient?

® And is that safe?

® Double all the numbers in an array
var numbers = [1,2,3,4,5]

® Imperative:

var doubled = []
for(var i = 0; i < numbers.length; i++) {

var newNumber = numbers[i] * 2
doubled. push(newNumber)
I

® Functional:
var doubled = numbers.map(function(n) {
return n * 2

})

¢ Select all the dogs that belongs to a specific owner

® Declarative:
SELECT * from dogs INNER JOIN owners
WHERE dogs.owner id = owners.id

¢ Imperative:
var dogsWithOwners = []
var dog, owner

for(var dog in dogs) {
for(var owner in owners) {
if (owner && dog.owner id == owner.id) {
dogsWithOwners.push({ dog: dog, owner: owner })




Kernel Language

® Kernel language: is the minimal
language that you need for a given
Introduction to KL paradigm
Define a mapping between a full
programming language into the
kernel language
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Kl

® Practical language ® Practical language ® KL is a Kernel Language
f ti T ° i i . . . . .
e K Provides usefull abstractions ® You will be developing its interpreter during
R ! for the programmer
define b = he lab
sqrt(sqgrt(a)); °I(;an t?e gxt(te)nded ‘.Nith 't € 1abs
® Kernel language . inguistic abstractions Written in prthon
define sqrt = function Kernel language ® It is defined as:
(x}) ->y {y=mul(x, ° Easy to understand and R R .
x): } feason syntax: inspired C/JavaScript
define  t1 = o . © semantic: +procedure+closure+cell
sqrt(a); Has a precise (formal) °In the future, based on the idea of adding concepts
define b = semantic ' g p

sqrt(__ t1_ ); ® Mapping through a macro system (lecture 14)




Syntax Modules

e e o1 import std 1.0;
SRR L std.print("Hello World");
. def%ne SR = equal§(b. 0): o
e import test 1.0;
R Nei= o L R test.case("Functions Call")
i e LS SR e .check(true);

define t6 = function() { print("No problem!"); };
catch( t4 , t5 );
catch( t4 , t5 , t6 );

Conclusion

® Definition of a programming
language

® Defining the semantinc using
programming paradigms
classification

¢ KL




