Lectures

1Introduction
2Concepts and models of programming languages
3Declarative Computation Model
4Declarative Programming Techniques
5Declarative Computation Implementation
TDDA69 Data and Program Structure cDeclorative Coneurrency
7Message Passing Concurrency
8Explicit State and Imperative Model
9Imperative Programming Techniques
10Imperative Programming Implementation
11Shared-State Concurrency
12Relational Programming
13Constraint Programming
14Macro
15Running natively and JIT
16Garbage Collection
17Summary

Cyrille Berger

LINKOPING
II." UNIVERSITY

Lecture content

® Defining a programming language
® Classification of programming

languages Defining a programming language
® The different programming

paradigms
® Why different paradigms?
® Introduction to KL

LINKOPING
Il.u UNIVERSITY

Defining a programming language (1/2)

Y
Semantics?*

Debugger

Model checker
Symbolic execution

Verifier

Formal Grammar

Defined by G=(N, 2, B S).
¢ A finite set N of nonterminal symbols
¢ A finite set X of terminal symbols, disjoint from N
¢ Afinite set P of production rules, each of the

form
(Z UJ N)*N(Z uJ N)* —> (Z LJN)*
® Astart symbol SE N
<digit>=='0" | "' | 2" | '3'|'4' | '5' | '6' | '7' | '8 | 'O
<integer> ::=[-'] <digit> {<digit>}

Defining a programming language (2/2)

¢ Syntax
SELECT * FROM table WHERE id=1
SELECT * FROM table WHERE

¢ Semantics
“ What operation does a SELECT do?

Context-Free Grammar

Defined by G=(N, 2, B S).
® A finite set NV of nonterminal symbols
¢ A finite set X of terminal symbols, disjoint from N
¢ A finite set P of production rules, each of the

form
® A start symbol SE N
<digit> ::= IOI | l1l | l2l | l3| | l4| | |5| | |6I | |7l | I8l | I9l
<integer> ::=[-'] <digit> {<digit>}

LR(Parser

E

® Grammar:

® LR parser has a stack and input

E-(E)

EmE+E

® It uses two operations: shift and “ Stack

E

reduce *Input:
® It builds a parse tree et

LR(1) and Chomsky Normal Form Grammar

® A Chomsky Normal Form Grammar is a
CFG such as, the production rules have the

form

A — BC A, B, C e N3
A — a A e IN,a & >

® Any CFG can be transformed into a CFN
® Most generated parser use a variant of
LR(1) which is defined from a CNF

Cemanticr

® The grammar
defines what is valid

or not

(3+4)+(5+6) Classification of programming languages
3+)(+6)

® The semantic

defines what is the

expected result
18

LINKOPING
Il.u UNIVERSITY

Classification of programming languages Limitation of a paradigm classification

The blind men
and the elephant

It's a rope!

It's a tree trunk!

Languages Paradigms Concepts Its @ snakel

(Croativia oavtancinn nrinrcinl,

* No exceptions ® With exceptions
I“"“t“" Lty function f1 -> x1()
set x2 = f2()
if(1x2) { ... } set x2 = f2()

}a'lsex1=... x1 = ...

function 2 -= x2() "

{ function f2 -> x2()
set x3 = f3()

The different programming paradigms $set 13 = 130

else x2 = ..
1 x2 = ..
function f3 -> x3() }
{ .
e function 3 -> x3()
if(!x4) { x3 = null }
else x3 = ...

set x4 = f4()

: =
function f4 -> x4() %x3 ae
{ .
if(valid) { f4 = ... } function f4 -> x4()
else { f4 = null } {
’ if(valid) { f4 = ... }

else { throw Exception() }

LINKOPING
II." UNIVERSITY

s The principal programming paradigms
m;inx ""More is not better (or worse) than less, just different."

L]
ML,
Data structures only ?‘f"!’ffﬁ“‘f" ,, a a I V
+ procedure i t v1.08 © 2008 by Peter Van Roy

+ cell (state)

® Expresses logic of computation

pr g T programming
+ unification } ' SNOBOL, Icon, Prolog

s iy 8 M without control flow:

ADT
functional

Scheme, ML askell, ML, .
oy g | T , ° What should be computed and not how it should

+ por
T) e | (channel)

prmng 3 3 | "d;'..aﬂ:y | Java, OCaml b e CO m p U te d .

Prolog, SQL
embeddings
+ solver

Ob;ect—capawny Java, Alice

Weak synchronous

Haskell Declarative ' C l“ L5 Zli ;KL 5 + thread ‘
concurrent 0 Z, ce, N -
s] s || E les: XML/HTML, antlr4/ /
S];:;:LOGSOIW ngrml:'i‘:z.sz:Rednce - Oz:llice,Cl;rry,Excel, | Xa m p eS' I a n r yacc
S Vi e e N » :
- - - o regular expressions, make/ants, SQL,

+ by—need synchronization

programming + [0;

Lazy :
e 3 FrTime, SL CSP, Occam,
programming i + instantancous computation ulfl’is?l/zs’ Lﬁalslzf{be cee
0z, Alice, Curry 0z, Alice, Curry i | Strong synchronous | tl:lple space (Lin da;) L -
! programming ' SQL embeddings
s o a ‘
— !

Esterel, Lustre, Signal | Dataflow and .
| et Message passing

Unnamed state (seq. or conc.) ‘ RO 2 Named state
1

More declarative } - } - } Less decl

Declarative - Examples Functional

® <p>Hello world!
® SELECT name FROM student
WHERE course eq 'TDDAG9'
® grammar Hello;
r :'hello'ID;
ID :[a-z]+;
WS : [' '\t\r\n]+ -> skip ;

® Computation are treated as

mathematical function
© without changing any internal state

® Examples: Lisp, Scheme, Haskell...

Functional - Examples

® (print "Hello World")

® Express how computation are
® (take 25 (SquareS‘Of executed
(integers))) ° Describes computation in term of statements that
>(1491625364964...576 625)

change the internal state
® Examples: C/C++, Pascal, Java,
Python, JavaScript...

Imperative - Examples Object-Oriented

for(var i=1; i< 26; ++i)

e ® Based on the concept of objects,
console. lo (sq] . . .

o Hnclude mjm_h, which are data structures containing

int main() .

{chgr ch; ﬁe/dsand methOdS
Ega?ﬂ‘énte&c?”f:aCteA\I:ch ey Ein ° Programs are designed by making objects

e o bl et interact with each others
"Brintr(ic is not o vowel Ao, o) ® Examples: C++, Java, C#, Python,

: ;

Ruby, JavaScript...

Logic and symbolic

* #include <iostreans=
class Character : public Symbol ' M
e Logic
I © Based on Formal logic: expressing facts and rules
return ch == | eh == 'A" || ‘e! ch == 'E' || ch == 'i"
|| ch == ‘I' || ch =='c' || che='0' || ch == ‘u* || ch == 'U*; .
e ¢ Symbolic
char m_c;
b ming © A program can manipulate its own formulas and
Shiscom < “Ener a chaaceers o' components as if they are data
Character chi ‘c}
if(ch.isVowel()) " o
: s{d:::on: << ¢ << " 15 a vowel.\n"; EXa m ple. p rOIOg
std::cout is not owel

Logic programming

® likes(mary, food).
likes(mary,wine).
likes(john,wine).
likes(john,mary).

®| ?7- likes(mary,food).
yes.
| 7- likes(john,wine).
yes.
| ?- likes(john,food).
no.

Constraint Programming

Symbolic programming

H T
1= atomic(C).

d(sin(w), X,
d{ W, X, 7)

d{ exp(W), X,
di W, X, Z)

7. d(cos(2*X+1
what = Z#sin(2+#X+1

Constraint Programming - Examples

Z*cos(W)):-

Z*exp(W)):-

), X, what)
)

¥ d(X) w.r.t. Xis 1 LFf
/* If C is a constant */
/* then d(C)/dX is @ */
/* d(U+V)/dX = A+B where */
/¥ A =d(U)/dX and =

/* d(sin(W))/dX = Z*cos(W) */

/* where Z = d(W)/dX *f
/* dlexp(W))/dX = Z*exp(W) e
/* where Z = d(W)/dX *f

® Constraint

© A relation between two variables are stated in the
form of a constraint (can be logic or numerical)

® Example: Oz (functional),
Kaleidoscope (imperative), Prolog

(logic)

oo

local
proc {MyScript Solution}
X={FD.int 1#10}
Y = {FD.int 1#10}
Z={FD.int 1#10}

in
Solution = unit(x:X y:Y z:2)

X+Y=2Z

X<y

%% search strategy

{FD.distribute naive Soluti
end

in
{Browse {SearchAll MyScrip
end

oo

ion}

it}

Why different paradigms?

LINKOPING
Il.u UNIVERSITY

Functional vs Imperative

[s there a paradigm to rule them all?

® In theory you can program
everything in C/C++ and imperative

programming, or functional
programming...
® But is that convenient?

® And is that safe?

® Double all the numbers in an array
var numbers = [1,2,3,4,5]

® Imperative:

var doubled = []
for(var i = 0; i < numbers.length; i++) {

var newNumber = numbers[i] * 2
doubled. push(newNumber)
I

® Functional:
var doubled = numbers.map(function(n) {
return n * 2

})

¢ Select all the dogs that belongs to a specific owner

® Declarative:
SELECT * from dogs INNER JOIN owners
WHERE dogs.owner id = owners.id

¢ Imperative:
var dogsWithOwners = []
var dog, owner

for(var dog in dogs) {
for(var owner in owners) {
if (owner && dog.owner id == owner.id) {
dogsWithOwners.push({ dog: dog, owner: owner })

Kernel Language

® Kernel language: is the minimal
language that you need for a given
Introduction to KL paradigm
Define a mapping between a full
programming language into the
kernel language

LINKOPING
II." UNIVERSITY

Kl

® Practical language ® Practical language ® KL is a Kernel Language
f ti T ° i i
e K Provides usefull abstractions ® You will be developing its interpreter during
R ! for the programmer
define b = he lab
sqrt(sqgrt(a)); °I(;an t?e gxt(te)nded ‘.Nith 't € 1abs
® Kernel language . inguistic abstractions Written in prthon
define sqrt = function Kernel language ® It is defined as:
(x}) ->y {y=mul(x, ° Easy to understand and R R .
x): } feason syntax: inspired C/JavaScript
define t1 = o . © semantic: +procedure+closure+cell
sqrt(a); Has a precise (formal) °In the future, based on the idea of adding concepts
define b = semantic ' g p

sqrt(__ t1_); ® Mapping through a macro system (lecture 14)

Syntax Modules

e e o1 import std 1.0;
SRR L std.print("Hello World");
. def%ne SR = equal§(b. 0): o
e import test 1.0;
R Nei= o L R test.case("Functions Call")
i e LS SR e .check(true);

define t6 = function() { print("No problem!"); };
catch(t4 , t5);
catch(t4 , t5 , t6);

Conclusion

® Definition of a programming
language

® Defining the semantinc using
programming paradigms
classification

¢ KL

