
TDDE55	Data	and	Program	Structure

Introduction
Cyrille	Berger

2	/	26

Lecture	content
Course	Introduction

Course	Practicalities

Course	Introduction

4	/	26

Course	goals
Describe	aspects	of	evaluationevaluation	and

executionexecution	in	different	language	models

Explain	and	demonstrate	how	design

choices	affect	the	expressivenessexpressiveness	and

efficacy	of	a	programming	language

Analyze	and	value	programming

languages	based	on	their	evaluationevaluation

and	compilationcompilation	strategies

Implement	programming	languages	in

the	form	of	an	interpreterinterpreter	and	a

compilercompiler



5	/	26

Why	should	you	care	about	this	course?

Programming	languages	are	the	key	tools	that	define	how

we	think	about	computations,	and	what	we	are	able	to

It	will	help	you	understand	why	programming

language	works	a	certain	way	and	what	are	the	limits

What	you	learn	during	this	course	will	give	you	the	power

to	learn,	choose,	and	craft	your	tools	effectively.

In	this	course	we	will	look	at	programming	with	a

scientific	eye.

6	/	26

Evolution	of	programming	languages

7	/	26

Creative	extension	principle
Why	new	language/new	extension?

Existing	language	have	limitations	in	expressiveness

With	increase	in	complexity	of	the	features	provided,

the	source	code	complexity	increase,	this	can	be	solve

with	new	programming	conceptnew	programming	concept

8	/	26

Example	of	creative	extension	principle

Without	exception With	exception



9	/	26

The	story	of	null
Zero	was	inventend	in	India	by	Brahmagupta	in

the	7th	Century
A	revolution	in	mathematics,	from	LXXXIX	to	89...

A	placeholder	for	nothing

Critical	development	in	number	theories

...

Null	was	invented	in	1964	by	Tony	Hoare	for

ALGOL-60
It	is	also	a	placeholder	for	nothing

10	/	26

The	Billion	Dollar	Mistake
Null	is	an	example	of	creative	extension	gone	wrong
It	was	added	to	by-pass	safety	checks

Tony	Hoare:	I	call	it	my	billion-dollar	mistake…At	that	time,	I	was	designing

the	first	comprehensive	type	system	for	references	in	an	object-oriented

language.	My	goal	was	to	ensure	that	all	use	of	references	should	be

absolutely	safe,	with	checking	performed	automatically	by	the	compiler.

But	I	couldn’t	resist	the	temptation	to	put	in	a	null	reference,	simply

because	it	was	so	easy	to	implement.	This	has	led	to	innumerable	errors,

vulnerabilities,	and	system	crashes,	which	have	probably	caused	a	billion

dollars	of	pain	and	damage	in	the	last	forty	years.

11	/	26

What	is	wrong	with	null?	(1/4)

NULL	subverts	types
In	Java	x.toUpperCase()	can	be	called	as	long	as	x	is	a

string...	and	is	not	null

NULL	is	sloppy

12	/	26

What	is	wrong	with	null?	(2/4)

NULL	is	a	special-case

In	C	strings	are	null	terminated...



13	/	26

What	is	wrong	with	null?	(3/4)
NULL	makes	poor	APIs
Key-value	store

Double	nulls

14	/	26

What	is	wrong	with	null?	(4/4)

NULL	exacerbates

poor	language

decisions

NULL	is	difficult	to	debug

15	/	26

How	to	solve	the	NULL	problem?

With	some	creative

extension	design...

Compile	check	(in

Crystal):

Optional<T>
Contains	either	a	value,	or	information	if	the	value	is	set

16	/	26

The	moral	of	the	story
creative	extension	design	brings	good

and	bad	changes

New	concepts	need	to	be	tested

Design	choices	in	programming

languages	have	far	reaching

conscequences



17	/	26

How	is	a	program	interpreted?
Source	code Parser

Parser

Abstract	Syntax	Tree Tree	visitor

Generator Source	code ...

Bytecode Virtual	Machine

Assembler Assembly Operating	System CPU

18	/	26

Facebook's	work	on	the	PHP	intepreter

Facebook	started	with	PHP	in	2004

Back	at	the	time,	PHP	was	the	gold	standard	for

website	programming	and	prototyping

But	this	is	causing	problems	and	for	practical	reasons

they	cannot	change	programming	language

19	/	26

What	did	Facebook	do?
The	standard	PHP	interpreter	is	using	a	virtual	machine

(Zend)

They	developed	a	tool	to	convert	PHP	to	C++

Then	they	developed	a	new	interpreter	that	do	Just-In-

Time	(JIT)	compilation,	called	HHVM

They	introduced	Hack,	a	variant	of	PHP	with	a	typing

system

20	/	26

And	other	examples...
Google	with	Java,	Dalvik,	ART...

Python	with	CPython	vs	pypy...

Qt's	JavaScript,	switching	from	AST

Interpretation	to	JIT	and	to	a	mix	of	JIT

and	AST	Interpretation

...



Course	Practicalities

22	/	26

Inverted	Classroom
Main	idea	is	that	traditional	homework	is	done	in	the

class,	and	traditional	class	activities	are	done	at	home

Lectures	are	all	as	the	video

You	are	free	to	conduct	exercises	during	seminar/labs

or	at	home

You	can	ask	questions	during	seminar/labs	and	I	will

setup	a	forum	on	lisam

23	/	26

Teaching	Activities

24	/	26

Division	of	time
~15h	lectures	(in	17	sessions)

~48h	labs/tutorials	(in	24	sessions)

~107h	homework

Labs:	maximum	2	per	group



25	/	26

Change	from	last	year
Change	of	course	code

First	year	with	pre-recorded	lectures,	an	average	of

10-15	students	watching	them,	up	from	0-2	for	live

lectures

Update	to	Exercise	1

One	lecture	will	get	major	changes

Some	labs	will	get	more	detailed	instructions/examples

26	/	26

And	now	what?
Watch	lectures,	read	the	book,	do	the

exercises

Come/attend	to	the	labs	to	ask

questions


