
Programming Project with
Open Source Code
(TDDE52/726A89)

Dániel Varró, Anders Fröberg, Máté Földiák

• A note on scale...

ECSE 321 Software engineering processes 3

ECSE 321 Software engineering processes 4

ECSE 321 Software engineering processes 5

ECSE 321 Software engineering processes 6

ECSE 321 Software engineering processes 7

Characteristics of ultra-large-scale systems

⚫ Everything is decentralized (data, control,...)

⚫ Requirements: conflicting, diverse, unkown,...

⚫ Continuous evolution

⚫ Heterogeneous, inconsistent and changing elements.

⚫ Eroded people-system boundary

⚫ Failure is the norm

Adapted from Northrop et al. 2006, CMU

• How can we study this at university?

Agenda

• Course goals, requirements

• Weekly plan

• Tools and meetings

• Forming teams

Course goals

1. Use existing conventions and follow established processes to contribute through
software to a distributed, large-scale development project.

2. Present changes and updates so external parties may approve submissions.

3. Create a time plan and monitor progress through a common development project

4. Use appropriate tools for contemporary, large-scale software development

5. Independently acquire new knowledge and skills in order to contribute to a
large-scale software project.

Informal goals

• Portfolio of contributions

• Hands-on experience

• Professional and technical skills

• Creative, hopefully fun and self-steered

• Demonstrating how great LiU students are to the world!

What happens in practice during the course

• You choose a project to work on.

• You make plans for how to contribute to the project.

• We meet every week to discuss how it has been going, try to support each
other and make plans for next week.

• Between meetings you work with the project and use Teams to
communicate with the rest of the team.

Projects

• OSS projects (Github, Gitlab, SourceForge, …) of sufficient size:

• 30+ developers,

• 1000+ commits,

• actively maintained during the last three months by at least 15
developers

• Project type/difficulty will determine grade possible

Level
Technical

difficulty

Process

difficulty

Development

process

Individual

contributions

Easy 6 3 4 8

Medium 12 6 8 16

Expert 18 9 12 24

Points table

Grades

• 21-34 points: grade 3

• 35-48 points: grade 4

• 49-63 points: grade 5

• Example: Lowest technical and process difficulty and highest points

on development process and individual contributions: 6+3+12+24 =
45, grade 4

• Example: Highest technical and process difficulty and lowest points

on development process and individual contributions: 18+9+4+8 =
37, grade 4

Technical

difficulty

Build and test

environment

Domain knowledge

requirements

Size

Easy No configuration

needed

No expertise apart from

course-level knowledge

required

50-400 KLOC, 0-3 external static

libraries required.

Medium File settings and

manual build steps

A few specific new

algorithms or tools to

learn

400 KLOC-1MLOC, several components

built and tested against both internal

and external components

Hard Custom configuration

languages, build tools

Several weeks or

months of study

estimated for initial

contributions

More than 1 MLOC, several

components shipped in multiple

versions with dependencies on each

other as well as external components.

Process difficulty Issue tracker Documentation Communications

Easy Contains issues

tagged as suitable for

beginners

Contains guides and

tutorials for new

developers

Contains specific

communication

channels for new

developers

Medium Contains issues

marked with difficulty

Contains introduction

chapters and

suggested readings in

documentation

Contains open

communication

channels

Hard No metadata on

difficulty in issue

tracker

No clear introduction

to new developers

Restricted

communication

channels

Development

process

Group contributions Planning and

reflection

Engineering practice

Easy Shares code, tutorials

and development tips

to other members of

the team. Actively

participates in project
meetings.

Creates a plan for

each sprint with

sufficient details to

guide the work,

amounting to a
number of hours that

correspond the

amount of credits

given by the course.

Uses the required set

of tools and

suggested practices

for code contributions

in the host project

Medium Shares

documentation and

material, and also

gives valuable

feedback on others'
contributions

Uses the plan actively

and updates the plan

to take into account

new information and

events

Takes care to follow

established good

practices in

continuous

development and
testing

Hard Actively helps team

members improve,

and provides tutorials

or other help to team

members

Uses external sources

from the host project

to validate the

feasibility of the plan

and to update
accordingly

Contributes with

general quality

improvements for the

process of

developing, building
and testing software

in the project

Contribution

s

Quantity of code

contributions

Complexity of code

contributions

External communications

Easy At least one contribution

that has been accepted

by the project

Non-trivial code contribution Has been able to communicate

successfully with at least one developer

in the external project on a suggested

contribution

Medium Several contributions

that has been accepted

by the project

Code contributions that

solve different problems or a

moderately challenging

problem

Has participated in several discussions

with project members before and after

own contributions

Hard Several types of

contributions (e.g. new

features, bug fixes or

documentation) that has

been accepted by the
project

Code contributions that

solve a challenging problem

Has successfully proposed new

features to the project

Next steps

• Select a project that you would like to contribute to. You will also form X
number of teams, possibly with the same project that you work on.

• Write individual project plans, with general ambitions and detailed plans
for the first sprint, and additional information before each coming sprint

• Deadline: September 11 23:59

• Discussion on preliminary/draft plans on first meeting (Sept 6)

• 45 minutes/week for discussing progress within each group

Course evaluation and changes

Schedule

Week Session

35 This lecture

36 First round of project selections

37 Planning report review

38-41 Weekly meetings

42 Mid-semester review

45-50 Weekly meetings

51 Final presentation (Dec 18)

Experiences from last years

⚫ Zulip - Good and welcoming, open communication, would choose again.

⚫ OpenRCT - Good general documentation on the process, but not about the
actual project, good communication (discord), Good to play the game (or
use the sw), can recommend.

⚫ NIFI – Good but requires (significant) domain knowledge

⚫ Strapi - Difficult communicaiton, hard to get in.

⚫ Oppia - Welcoming community, good documentation.

⚫ Bootstrap - Core-team hard to communicate with

⚫ Bitwarden - Have to get approval, good to communicate with.

Other projects from the past

⚫ Material-UI

⚫ Oppia

⚫ Godot

⚫ Atom

⚫ Electron

Discussion of project proposals

Next steps

• Select an OSS project and start drafting a plan

• You are free to choose projects as you like, but you will be graded on
your ability to help each other out in your student teams as well as

your contributions to the project

• Good if people with same/similar project in same group

• Preliminary grouping in next meeting

	Slide 1: Programming Project with Open Source Code (TDDE52/726A89)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 9: Characteristics of ultra-large-scale systems
	Slide 10
	Slide 11: Agenda
	Slide 12: Course goals
	Slide 13: Informal goals
	Slide 14: What happens in practice during the course
	Slide 15: Projects
	Slide 16
	Slide 17: Grades
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Next steps
	Slide 23: Course evaluation and changes
	Slide 24: Schedule
	Slide 25: Experiences from last years
	Slide 26: Other projects from the past
	Slide 27: Discussion of project proposals
	Slide 28: Next steps

