
Programming Project with
Open Source Code
(TDDE52/726A89)
Mikael Asplund & Anders Fröberg

A note on scale...

Characteristics of ultra-large-scale systems

● Everything is decentralized (data, control,...)

● Requirements: conflicting, diverse, unkown,...

● Continuous evolution

● Heterogeneous, inconsistent and changing elements.

● Eroded people-system boundary

● Failure is the norm

Adapted from Northrop et al. 2006, CMU

How can we study this at university?

Agenda
• Course goals, requirements

• Weekly plan

• Tools and meetings

• Forming teams

Course goals
1. Use existing conventions and follow established processes to contribute through

software to a distributed, large-scale development project.

2. Present changes and updates so external parties may approve submissions.

3. Create a time plan and monitor progress through a common development project

4. Use appropriate tools for contemporary, large-scale software development

5. Independently acquire new knowledge and skills in order to contribute to a
large-scale software project.

Informal goals
• Portfolio of contributions

• Hands-on experience

• Professional and technical skills

• Creative, hopefully fun and self-steered

• Demonstrating how great LiU students are to the world!

Projects
• OSS projects (Github, SourceForge, …) of sufficient size:

• 30+ developers,

• 1000+ commits,

• actively maintained during the last three months by at least 15
developers

• Project type/difficulty will determine grade possible

Level Technical
difficulty

Process difficulty Development
process

Individual
contributions

Easy 7 3 4 8

Medium 14 6 8 16

Expert 21 9 12 24

Points table

Grades
• 22-36 points: grade 3

• 37-51 points: grade 4

• 52-66 points: grade 5

• Example: Lowest technical and process difficulty and highest points
on development process and individual contributions: 7+3+12+24 =
46, grade 4

• Example: Highest technical and process difficulty and lowest points
on development process and individual contributions: 21+9+4+8 =
46, grade 4

Technical difficulty Build
environment

Domain knowledge
requirements

Size Activity

Easy no
configuration
needed

no expertise apart
from course-level
knowledge required

50-400 KLOC, 0-3 external
static libraries required.

Developed by at least 15
developers in the last three
months. At least 30
developers in total.
1000+commits.

Medium file settings
and and
manual build
steps

A few specific new
algorithms or tools
to learn

400 KLOC-1MLOC, several
components built and tested
against both internal and
external components

Developed by at least 20
developers in the last three
months. At least 50
developers in total.
3000+commits.

Hard Custom
configuration
languages,
build tools

Several weeks or
months of study
estimated for initial
contributions

More than 1 MLOC, several
components shipped in
multiple versions with
dependencies on each other
as well as external
components.

See Easy

Process difficulty Issue tracker Documentation Communications

Easy Contains issues tagged
as suitable for
beginners

Contains guides and
tutorials for new
developers

Contains specific
communication
channels for new
developers

Medium Contains issues marked
with difficulty

Contains introduction
chapters and suggested
readings in
documentation

Contains open
communication
channels

Hard No metadata on
difficulty in issue tracker

No clear introduction to
new developers

Restricted
communication
channels

Development process Group contributions Planning and
reflection

Internal process

Easy Shares code, tutorials
and development tips to
other members of the
team. Actively
participates in project
meetings.

Creates a plan for each
sprint with sufficient
details to guide the
work, amounting to a
number of hours that
correspond the amount
of credits given by the
course.

Uses the required set of
tools and suggested
practices for code
contributions in the host
project

Medium Shares documentation
and material, and also
gives valuable feedback
on others' contributions

Uses the plan actively
and updates the plan to
take into account new
information and events

Takes care to follow
established good
practices in continuous
development and
testing

Hard Actively helps team
members improve, and
provides tutorials or
other help to team
members

Uses external sources
from the host project to
validate the feasibility of
the plan and to update
accordingly

Contributes with
general quality
improvements for the
process of developing,
building and testing
software in the project

Contributions External code contributions External communications

Easy has submitted at least one non-trivial code
contribution that has been accepted by the
host project

has been able to communicate successfully
with at least one developer in the external
project on a suggested contribution

Medium has committed several non-trivial code
contributions accepted by the project

has participated in several discussions with
project members before and after own
contributions

Hard has committed several types of significant
contributions (e.g. new features, bug fixes
or documentation) to the project, that have
been generally approved or appreciated

has successfully proposed new features to the
project

Course outline
• Select a project that you would like to contribute to. You will also form 2-

2-4 teams, possibly with the same project that you work on.

• Write individual project plans, with general ambitions and detailed plans
for the first sprint, and additional information before each coming sprint

• Deadline: September 13 23:59

• Discussion on preliminary/draft plans on first meeting (Sept 8)

• 45 minutes/week for discussing progress within each group

Course evaluation and changes

Schedule

week Activity Seminar

36 Contribution plan
submission, forming
teams

37 Contribution plan review

38 Mid-sprint 1

39 Sprint 1 review

40 Mid-sprint 2

41 Sprint 2 review

… …

51 Public presentation of
contributions

Example projects
● Material-UI

● Oppia

● Godot

● Atom

● Electron

● ...

Discussion of project proposals

Forming teams
• Select an OSS project and write a plan

• You are free to choose projects as you like, but you will be graded on your
ability to help each other out in your student teams as well as your
contributions to the project

• Good if people with same/similar project in same group

• Preliminary grouping in next meeting

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Agenda
	Course goals
	Informal goals
	Projects
	Slide 10
	Grades
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Course outline
	Slide 17
	Schedule
	Slide 19
	Discussion of project proposals
	Forming teams

