
TDDE51 Lecture 2	
git internals
August Ernstsson	

Based on slides by Martin Sjölund & Mikael Asplund

Why Git?

Why do you need version control?

• Backup (go back in time)
• Not only useful for source code(!)

• Maintain different versions (stable, development)

• Collaborate with others
• Share your code
• Let others suggest contributions
• Work together
• Manage project workflow

A bit of history

• 1973: Source Code Control System (SCCS)
• Centralized, interleaved deltas

• 1982: Revision Control System (RCS)
• Centralized, revision-based

• 1990: Concurrent Versions System (CVS)
• Based on RCS, manages projects rather than individual files

• 2000: Subversion (SVN)
• Designed to be mostly compatible with CVS. Transaction model, database backend.

• 2000-2005: Bitkeeper, Darcs, DCVS, Mercurial, Git,
• Distributed version control
• Flexible workflows

Source code management

• GitHub

• GitLab	
• LiU gitlab

• Bitbucket

• Azure DevOps

• …

More on Git

• Created by Linus Torvalds in 2005
• Inspired by BitKeeper and Monotone
• Development started when BitKeeper stopped being available for free

• Non-linear development
• Thousands of branches

• Fully distributed
• But mostly not used as such

• Open source
• Designed to be fast and scalable

• Mercurial did not have the performance or features needed for the Linux kernel
• Most operations are local
• Focus on data integrity (checksums)

Distributed state management

• Generic problem in distributed systems
• Inherent conflict – Consistency, Availability, Partition tolerance (CAP)

• State-based propagation
• Efficient
• Conflict-prone (requires merging)

• Operation-based propagation
• Better concurrency (but conflicts can remain)
• Potentially slow

git

Git objects

• Blobs
• Think of them as files

• Trees
• Think of them as directories

• Commits
• Think of them as versions

Object model

https://stolee.dev/

Blobs

• Content of file (not name or metadata)

• Identified by hash

• Nice commands
• git hash-object (-w)
• git cat-file -p

Trees

• Names of files (blobs) and directories (trees)

• Permissions (mode)

• Changing contents create a new tree (new hash)

• Commands
• git cat-file –p (again)
• git ls-tree
• git mktree

https://stolee.dev/

Example: Accessing git tree/blob

marsj@WIN01811:~/OpenModelica$ git ls-tree HEAD | head -n 4

040000 tree 14c745190454bb576b25421af2110179fdfa5706 .CI

040000 tree 1d04cfa0917f1fa56fa2c040e65dfcaa90e6f738 .externalToolBuilders

100644 blob 55061b584455324ff7432098a20e1e78cfd0dfc1 .gitattributes

040000 tree 428e8384158e8f90c8c9f2a08fc09f8dd3caeea4 .github

marsj@WIN01811:~/OpenModelica$ git ls-tree 428e8384158e8f90c8c9f2a08fc09f8dd3caeea4

040000 tree 7932e141f46f8ce07c9c1f1cd436dc9a6a77bdc6 ISSUE_TEMPLATE

100644 blob 0124c04e8a553dbf5c6b452cdd1c26d301ea1aa0 pull_request_template.md

marsj@WIN01811:~/OpenModelica$ git cat-file -p 0124c04e8a553dbf5c6b | head -1

Related Issues

Pack files

• Conceptually, git objects are trees and blobs
• To send files over the network, files are packed (storing deltas of files)
• git repack can change your packs (on disk), and git push/fetch will send appropriate packs
~/OpenModelica$ for file in $(find .git/objects/pack -name '*.idx'); do
git verify-pack -v "$file" | grep $(git hash-object Jenkinsfile) && echo
"$file"; done

59f528edfcfef53bd81e679d527d3aad8265eba0 blob 32743 5112 195796

6ad3ef9f1ad69252d31d29af4fb08278f13e337c blob 22 35 200908 1 \
59f528edfcfef53bd81e679d527d3aad8265eba0

.git/objects/pack/pack-2861aaeca53c0c2127f8f591665ddab77f774d43.idx

SHA-1 type size size-in-packfile offset-in-packfile depth base-SHA-1

Pack file format

• Contains objects (commit, tree, tag, blob)
• Objects can be stored as is or as a delta of another object (in a chain if they are all in the

same pack-file)
• Deltas are stored in the following way:

• Instruction to copy from base object
	 Byte 1 (1xxxxxxx): flags which offset (max 4)/size (max 3) bytes are used (to save size).
	 These bytes are copied from the base object to the new one.

• Instruction to add new data
	 Byte 1 (0xxxxxx): 7-bit data size=n. Next n bytes are copied to the object

• See https://git-scm.com/docs/pack-format for details

https://git-scm.com/docs/pack-format

Commits

• A given version of the contents of the repository

• Contents
• A tree
• Commit message
• Author name, email and time
• Committer name, email and time
• List of parents

• Commands
• git log –graph –oneline
• git show (also useful for other objects)

Object model

https://stolee.dev/

topicmaster

HEAD

shipped
References are simply pointers in git

https://stolee.dev/

Git references

• Find them under .git/refs/

• Three types
• Branches
• Tags
• HEAD (symbolic link, .git/HEAD)

• Commands
• git tag
• git branch
• git checkout (git switch)

Branch example

Staging

Working with others

http://web.archive.org/web/20090210020404id_/http://whygitisbetterthanx.com/#the-staging-area

”The GitHub model”

Working with remotes

https://blog.osteele.com/2008/05/my-git-workflow/

Differences to Subversion	
(SCM, not distributed)
• svn commit – communicates with the server, is equivalent to git commit &&

git push
• Unable to create local commits, to save your work
• Unable to share your work with others before pushing to the server
• Branches do exist, but merging branches does not really work
• Need to query the server to see history (diffs) or logs (offline work is much

harder)
• In Subversion you only have the HEAD commit available (can save space)

Working with a shared repo

• git fetch origin
• Do this often

• Someone pushed changes before me!
• git merge
• git rebase (especially when working on smaller feature branches)
• Do this often or the number of merge conflicts might be too many to handle

• git pull
• git fetch & git merge in one step
• To be avoided or change the default behaviour: git config --global pull.ff only

• You can override this with git pull --rebase or by using git fetch && git merge

Why do we need to merge?

• Recall:

git merge or git rebase?

https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://creativecommons.org/licenses/by/2.5/au/

https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://creativecommons.org/licenses/by/2.5/au/

git merge or git rebase?

• git merge will create a commit with 2 parents
• git supports octopus merges with even more parents
• Multiple parents can be hard to visualize

• Try git log in the terminal
• Preserves the full history for feature and john/feature

• Any other branches based on feature would still work
• One merge commit each time you merge from the main branch (!)

• git rebase will destroy parts of the history
• You must never use this on code in the blessed repository
• The history is cleaner and easier to understand

Image is taken from:
https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://creativecommons.org/licenses/by/2.5/au/

https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://creativecommons.org/licenses/by/2.5/au/

Cleaning up your branch
commit be435f4b751eb010382c31140720f290b4fae78f (HEAD -> my-feature)

Author: Martin Sjölund <martin.sjolund@liu.se>

Date: Wed Jan 25 12:32:35 2023 +0100

 Fixup feature X

commit 13d66eccdc083257b7696e735d5ac5769eb124d6

Author: Martin Sjölund <martin.sjolund@liu.se>

Date: Wed Jan 25 12:32:17 2023 +0100

 Added another feature Y

commit 78d9b831ccfee5622639fd4ce0a066bcaf6905f3 (sjoelund/my-feature)

Author: Martin Sjölund <martin.sjolund@liu.se>

Date: Wed Jan 25 11:58:57 2023 +0100

 Added new feature

be435 should be part of the first commit (78d)
The history will then look like we added a
working feature X, and then feature Y

Interactive rebase (what git shows)

~/OpenModelica$ git rebase -i origin/master

pick 78d9b831cc Added new feature

pick 13d66eccdc Added another feature Y

pick be435f4b75 Fixup feature X

Rebase e689e7ba19..be435f4b75 onto e689e7ba19 (3
commands)

Interactive rebase (what you edit it into)

~/OpenModelica$ git rebase -i origin/master

pick 78d9b831cc Added new feature

fixup be435f4b75 Fixup feature X

pick 13d66eccdc Added another feature Y

Rebase e689e7ba19..be435f4b75 onto e689e7ba19 (3
commands)

We changed the order and set it to fixup
(merges into previous commit and does not
prompt for a new commit message)

Log after the merge

commit ece78ef5dd86ed067dc245e402b040647ea18d29 (HEAD -> my-feature)

Author: Martin Sjölund <martin.sjolund@liu.se>

Date: Wed Jan 25 12:32:17 2023 +0100

 Added another feature Y

commit 28fb302c13b5c44d0af55da70da64995d1952aeb

Author: Martin Sjölund <martin.sjolund@liu.se>

Date: Wed Jan 25 11:58:57 2023 +0100

 Added new feature

Both commit hashes are new
You can use this to
• Change commit messages
• Order of commits
• Remove commits (useful if you have

a commit adding printf debug
statements; removing the commit
removes all statements)

• Squash 2 commits together

Use it on origin/master as target so
you don’t change public commits by
accident

This rewrites the history!

Working with a tool like GitHub

• Others decide if your changes can be included

• Main mechanism: pull request

• You keep your own branch in your own fork of the repo or a branch in the public repo (if
you are on the development team and that method is used)

• When done you send in a pull request which is then
• Put through continuous integration (testing the code, CLA, etc)
• Reviewed
• Probably fixed by you
• Accepted
• Merged

My Github workflow

~/OpenModelica$ git checkout master

~/OpenModelica$ git pull --ff-only

~/OpenModelica$ git checkout -b my-feature

~/OpenModelica$ nano README.md

~/OpenModelica$ git commit -m "Added new feature" README.md

~/OpenModelica$ git remote add sjoelund git@github.com:sjoelund/OpenModelica.git

~/OpenModelica$ git push -u sjoelund

…

remote: Create a pull request for 'my-feature' on GitHub by visiting:

remote: https://github.com/sjoelund/OpenModelica/pull/new/my-feature

GitHub pull requests go beyond Git

https://ida.liu.se/~TDDE51

