

*~J

Why Git

SECOND EDITION

Pro

(it

EVERYTHING YOU NEED T0
KNOW ABOUT GIT

Scott Chacon and Ben Straub

Apress

LINKOPING
II.“ UNIVERSITY

Why do you need version control?

« Backup (go back in time)
« Not only useful for source code(!)

« Maintain different versions (stable, development)

 Collaborate with others
 Share your code
 Let others suggest contributions
« Work together
« Manage project workflow

LINKOPING
II." UNIVERSITY

A bit of history

1973: Source Code Control System (SCCS)
» Centralized, interleaved deltas

1982: Revision Control System (RCS)
e Centralized, revision-based

1990: Concurrent Versions System (CVS)
« Based on RCS, manages projects rather than individual files

2000: Subversion (SVN)
« Designed to be mostly compatible with CVS. Transaction model, database backend.

2000-2005: Bitkeeper, Darcs, DCVS, Mercurial, Git,
e Distributed version control
« Flexible workflows

LINKOPING
II." UNIVERSITY

SYNOPSYS' Black Duck Open Hub | signin |

Projects People Organizations Tools Blog Projects ~ Q

Compare Repositories

Bazaar: 0%
CVS: 1%

Subversion: 22%
\\

Mercurial: 1% —

 Git: 73%

LINKOPING
v,

Source code management

e GitHub

e GitLab
« LiU gitlab

e Bitbucket

e Azure DevOps

LINKOPING
II." UNIVERSITY

More on Git

Created by Linus Torvalds in 2005
« Inspired by BitKeeper and Monotone
« Development started when BitKeeper stopped being available for free

Non-linear development

« Thousands of branches
Fully distributed

« But mostly not used as such

Open source

Designed to be fast and scalable
« Mercurial did not have the performance or features needed for the Linux kernel

Most operations are local

Focus on data integrity (checksums)

LINKOPING
II." UNIVERSITY

Distributed state management

* Generic problem in distributed systems
« Inherent conflict — Consistency, Availability, Partition tolerance (CAP)

« State-based propagation
 Efficient < git

 Conflict-prone (requires merging)

« Operation-based propagation
 Better concurrency (but conflicts can remain)
 Potentially slow

LINKOPING
II." UNIVERSITY

Git objects

e Blobs
e Think of them as files

é * Trees
e Think of them as directories

O Commits
 Think of them as versions

LINKOPING
II.“ UNIVERSITY

Object model

https://stolee.dev/

LINKOPING
II.“ UNIVERSITY

Blobs WM

e Content of file (not name or metadata)
» Identified by hash

e Nice commands
« git hash-object (-w)
« git cat-file -p

LINKOPING
II.“ UNIVERSITY

Trees Z}

« Names of files (blobs) and directories (trees)

« Permissions (mode) README myFolder

« Changing contents create a new tree (new hash)

« Commands
« git cat-file —p (again)
o git Is-tree
* git mktree

https://stolee.dev/

LINKOPING
II.“ UNIVERSITY

Example: Accessing git tree/blob

marsj@WINO01811:~/0OpenModelica$ git ls-tree HEAD | head

040000 tree
040000 tree
100644 blob
040000 tree

14c745190454bb576b25421af2110179£dfa5706
1d04cfa0917f1fabo6fa2c040e65dfcaa90eof738
55061b584455324£f£7432098a20ele78cfd0dfcl
428e8384158e8£90c8c9f2a08fc09f8dd3caeceald

-n 4
.CI
.externalToolBuilders
.gitattributes
.github

marsj@WINO01811l:~/OpenModelica$ git ls-tree 428e8384158e8f90c8c9f2a08fc09f8dd3caeeal
040000 tree 7932e141fd406f8cel07c9clflcd4d30dc9aca’/bdco
100644 blob 0124c04e8ab53dbf5cobd52cddlc26d301lealaal

ISSUE TEMPLATE

pull request template.md

marsj@WINO01811:~/0OpenModelica$ git cat-file -p 0124c04e8a553dbf5c6b | head -1
Related Issues

LINKOPING
II.“ UNIVERSITY

Pack files

« Conceptually, git objects are trees and blobs
« To send files over the network, files are packed (storing deltas of files)

« git repack can change your packs (on disk), and git push/fetch will send appropriate packs

~/OpenModelica$ for file in $(find .git/objects/pack -name '*.idx'); do
git verify-pack -v "S$file" | grep $(git hash-object Jenkinsfile) && echo
"Sfile"; done

59f528edfcfef53bd8le679d527d3aad8265ebal blob 32743 5112 195796

0ad3ef9f1ado9252d31d29af4fb08278f13e337c blob 22 35 200908 1 \
59f528edfcfefb3bd8len79d527d3aad8265ebal

.git/objects/pack/pack-286laaeca53c0c2127£8£591665ddab77£774d43.idx
SHA-1 type size size-in-packfile offset-in-packfile depth base-SHA-1

LINKOPING
UNIVERSITY

Pack file format

« Contains objects (commit, tree, tag, blob)

« Objects can be stored as is or as a delta of another object (in a chain if they are all in the
same pack-file)

 Deltas are stored in the following way:
« Instruction to copy from base object

Byte 1 (1xxxxxxx): flags which offset (max 4)/size (max 3) bytes are used (to save size).
These bytes are copied from the base object to the new one.

e Instruction to add new data

Byte 1 (oxxxxxx): 7-bit data size=n. Next n bytes are copied to the object

« See https://git-scm.com/docs/pack-format for details

LINKOPING
II.“ UNIVERSITY

https://git-scm.com/docs/pack-format

Commits O

A given version of the contents of the repository

* Contents
o Atree
« Commit message
e Author name, email and time
« Committer name, email and time
« List of parents

« Commands
 gitlog —graph —oneline
« git show (also useful for other objects)

LINKOPING
II." UNIVERSITY

Object model

https://stolee.dev/

LINKOPING
II.“ UNIVERSITY

References are simply pointers in git @

shipped master topic

—

>

/\ /\ /\
ol
/X /X)\ /\ /\
, /\
y

A N

W 2

>

/ \
/ \
/\
/ \

ANGPEA
,

https://stolee.dev/

LINKOPING
II." UNIVERSITY

Git references

« Find them under .git/refs/

« Three types
« Branches
« Tags
« HEAD (symbolic link, .git/HEAD)

« Commands
 git tag
e git branch
« git checkout (git switch)

LINKOPING
II." UNIVERSITY

N
Q o
Branch example stable
After "git checkout old":
'HEAD]
Q—O
/ . master
9 9 o 0\ Q
Q Qo
stable
After "git commit":
(HEADI _
Qo Qo Qo
/ \ master
Q Q Qo 0\ Q
Q Qo
stable

LINKOPING
II." UNIVERSITY

Staging

Working Staging .git directory
Directory Area (Repository)
Checkout the project

Stage Fixes

comit g

LINKOPING
TR e

Working with others

“The GitHub model”

blessed

repository developer developer
public public

integration developer developer
manager private private

http://web.archive.org/web/20090210020404id_ /http://whygitisbetterthanx.com/#the-staging-area

LINKOPING
II.“ UNIVERSITY

Working with remotes

Git Data Transport Commands

hztp://csteele.com

| commit -a ::}
| add (-u) > commit >

I push

e e e
local remote
workspace : .
repository repository
pull or rebase
< fetch

!

checkout I

diff HEAD

£ < checkout HEAD
@
F ¢

I

I

Ilo“ Ne% https://blog.osteele.com/2008/05/my-git-workflow/

Differences to Subversion
(SCM, not distributed)

« svn commit — communicates with the server, is equivalent to git commit &&
git push

« Unable to create local commits, to save your work

« Unable to share your work with others before pushing to the server

« Branches do exist, but merging branches does not really work

* Need to query the server to see history (diffs) or logs (offline work is much
harder)

« In Subversion you only have the HEAD commit available (can save space)

LINKOPING
II." UNIVERSITY

Working with a shared repo

« git fetch origin
Do this often

« Someone pushed changes before me!
* git merge
« git rebase (especially when working on smaller feature branches)
Do this often or the number of merge conflicts might be too many to handle

e git pull
« git fetch & git merge in one step

« To be avoided or change the default behaviour: git config --global pull.ff only
* You can override this with git pull --rebase or by using git fetch && git merge

LINKOPING
II." UNIVERSITY

Why do we need to merge?

A, ém

e Recall:

LINKOPING
II.“ UNIVERSITY

git merge or git rebase?

Feature

¢
O—O’O—?

John / Feature |

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

https://creativecommons.org/licenses/by/2.5/au/

LINKOPING
II.“ UNIVERSITY

https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://creativecommons.org/licenses/by/2.5/au/

Merging

Feature

git merge or git rebase? n

ooleoel

 git merge will create a commit with 2 parents 2
* git supports octopus merges with even more parents T
* Multiple parents can be hard to visualize
» Try git log in the terminal # Merge Commit

* Preserves the full history for feature and john/feature
* Any other branches based on feature would still work

* One merge commit each time you merge from the main branch (!)

* git rebase will destroy parts of the history
* You must never use this on code in the blessed repository _—
* The history is cleaner and easier to understand v
Image is taken from: O—O—O—OJ_@_@
https://www.atlassian.com/git/tutorials/merging-vs-rebasing 20
https://creativecommons.org/licenses/by/2.5/au John/ Feature
Brand New Commits

LINKOPING
II.“ UNIVERSITY

https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://creativecommons.org/licenses/by/2.5/au/

Cleaning up your branch

commit be435f4b751eb010382c31140720£290b4fae78f (HEAD -> my-feature)

Author: Martin Sjdlund <martin.sjolund@liu.se>
Date: Wed Jan 25 12:32:35 2023 +0100 be435 should be part of the first commit (78d)

The history will then look like we added a
working feature X, and then feature Y

Fixup feature X
commit 13d66eccdc083257b7696e735d5ac5769eb124d6
Author: Martin Sjdlund <martin.sjolund@liu.se>
Date: Wed Jan 25 12:32:17 2023 +0100

Added another feature Y
commit 78d9b831lccfee5622639fd4celalbbbcaf6905f3 (sjoelund/my-feature)
Author: Martin Sjdlund <martin.sjolund@liu.se>

Date: Wed Jan 25 11:58:57 2023 +0100

Added new feature

LINKOPING
II.“ UNIVERSITY

Interactive rebase (what git shows)

~/OpenModelica$ git rebase -1 origin/master
pick 78d9b831cc Added new feature

pick 13d66eccdc Added another feature Y
pick bed35f4b’75 Fixup feature X

Rebase e0689%9e7balf. .bed35f4b75 onto €689e7bal9 (3
commands)

LINKOPING
II." UNIVERSITY

Interactive rebase (what you edit it into)

~/OpenModelica$ git rebase -1 origin/master

pick 78d9p831lcc Added new feature we changed the order and set it to fixup
. . (merges into previous commit and does not
fixup bed35f4b75 Fixup feature X prompt for a new commit message)

pick 13d6oeccdc Added another feature Y

Rebase e0689%9e7balf. .bed35f4b75 onto €689e7bal9 (3
commands)

LINKOPING
II.“ UNIVERSITY

Log after the merge

commit ece78ef5dd86ed067dc245e402b040647€al18d29 (HEAD -> my-feature)

Author: Martin Sjdlund <martin.sjolund@liu.se>

Both commit hashes are new
You can use this to

Date: Wed Jan 25 12:32:17 2023 +0100

Added another feature Y .

commit 28fb302cl3b5c44d0af55da70dacd4995d1952aeb
Author: Martin Sjd6lund <martin.sjolund@liu.se>
Date: Wed Jan 25 11:58:57 2023 +0100 .

Added new feature

Change commit messages

Order of commits

Remove commits (useful if you have
a commit adding printf debug
statements; removing the commit
removes all statements)

Squash 2 commits together

Use it on origin/master as target so

you don’t change public commits by
accident

LINKOPING
II.“ UNIVERSITY

This rewrites the history!

Working with a tool like GitHub

Others decide if your changes can be included

Main mechanism: pull request

You keep your own branch in your own fork of the repo or a branch in the public repo (if
you are on the development team and that method is used)

When done you send in a pull request which is then
« Put through continuous integration (testing the code, CLA, etc)
« Reviewed
« Probably fixed by you
« Accepted
* Merged

LINKOPING
II." UNIVERSITY

My Github workflow

~/OpenModelica$ git checkout master

~/OpenModelica$ git pull --ff-only

~/OpenModelica$ git checkout -b my-feature

~/OpenModelica$ nano README.md

~/OpenModelica$ git commit -m "Added new feature" README.md

~/OpenModelica$ git remote add sjoelund git@github.com:sjoelund/OpenModelica.git
~/OpenModelica$ git push -u sjoelund

remote: Create a pull request for 'my-feature' on GitHub by visiting:

remote: https://github.com/sjoelund/OpenModelica/pull/new/my-feature

LINKOPING
II.“ UNIVERSITY

Open a pull request

Create a new pull request by comparing changes across two branches. If you need to, you can also compare across forks.

T:l base repository: OpenModelica/OpenModelica ™ €

base: master ¥ head repository: sjoelund/OpenModelica ¥ = compare: my-feature ¥

v Able to merge. These branches can be automatically merged.

9 Added new feature

Write Preview H B 7 =< & =1i2220@ 2 «
Related Issues -
<!-- Link to the issues that are solved with this PR. -->
Purpose
<!--- Describe the problem or feature. -->
Approach
<!--- How does this address the problem? --> -

%
Attach files by dragging & dropping, selecting or pasting them. co

Create pull request -

Allow edits by maintainers ()

@ Remember, contributions to this repository should follow its contributing guidelines.

-0- 1 commit [® 1 file changed

-0- Commits on Jan 25, 2023

Added new feature

_a sjoelund committed 1 minute ago

LINKOPING
I." UNIVERSITY

Reviewers

No reviews

Assignees

No one—assign yourself

Labels

None yet

Projects

None yet

Milestone

No milestone

Development

Use Closing keywords in the description to
automatically close issues

Helpful resources
Contributing
GitHub Community Guidelines

A 1 contributor

Ll;l 78d9bs3

<>

GitHub pull requests go beyond Git

- Use libraries.openmodelica.org mirror for package manager (#9704) #9712
casella merged 1 commit into openModelica:maintenance/vi.2e from sjoelund:1.28-gh-mirror [_[,:]on Nov 17, 2022

old code.

!E. [sjoelund commented on Nov 17, 2022 Member == Author () -+

And this fixes the problem where you have a slow or failed github download and on next start, you have a 0-size file that cannot
be unzipped and you have to manually remove.

‘ 7 casella commented on Nov 17, 2022 Member (@ --+

@sjoelund you convinced me :)

Q (a' casella merged commit b5c2f52 into Opentodelica:maintenance/v1.20 on Nov 17, 2022 Hide details Revert

2 checks passed
« @ continuous-integration/jenkins/pr-merge This commit looks good Details

v @ license/cla Contributor License Agreement is signed. Details

I " LINKOPING ¥ @ sjoelund deleted the 1.20-gh-mirror branch 2 months ago ReSrore i anth
o UNIVERSITY

https://ida.liu.se/~TDDE51

LINKOPING
II." UNIVERSITY

