# TDDE49 Information security modeling

Ulf Kargén ulf.kargen@liu.se



Based in part on original slides by Matus Nemec

# Information security modelling



# Security – non-technical example

- House rules:
  - No strangers alone in the house
  - Only roommates may remove things from the house
- Someone leaves the door unlocked
- A stranger enters the house through the door
- The stranger steals the TV



## Security example – in IT security terms

- House rules (no strangers alone in the house, only roommates may remove things from the house) ~ **Security policy**
- Stranger alone in the house ~ **Security violation**
- Valuables (TV, laptop, ...) ~ Assets
- Robber ~ Threat agent, adversary -> later attacker
- Unlocked door ~ Vulnerability
- Someone wants to steal the TV and sell it for cash ~ **Threat** (Existence of a vulnerability and an adversary)
- Entering through unlocked door ~ Attack vector
- Stranger enters through the door and removes the TV ~ **Attack**



# Information security modeling notions

- **Asset** anything useful or valuable worth protecting
  - E.g., data, systems and infrastructure, human resources
- **Vulnerability** an insufficient protection of an asset
  - Design/implementation flaw e.g., missing input validation
  - Deployment/configuration issue e.g., default passwords
  - Feature misuse HTML in email to disguise a phishing link
- Threat an event with the potential to harm an asset
  - Existence of a capable and incentivised adversary and a vulnerability; not necessary that the attack will occur
  - E.g., acts of malicious internal/ext. users, accidents, disasters



# Information security modeling notions

- Security policy formally defines security
  - E.g., the goals, rules, and practices; what is and isn't allowed
- **Security violation** system is in an unauthorized state
- Adversary, threat agent, attacker
- Attack a realization of a threat
  - E.g., by an attacker, due to the existence of a vulnerability
- Attack vector steps to carry out an attack
- **Countermeasures, security mechanisms** processes and measures that help enforce the policy; prevent violations, detect violations and limit damage; handle recovery



## Risk assessment



## Risk assessment

• **Risk** – determined by combination of the probability of an attack and the damage caused by the attack

R = T \* V \* C (risk equation)

• T – probability that the threat is instantiated, V – existence of vulnerabilities, C – cost of an attack (for victim)

R = P \* C

- P combined probability adversary exploits a vulnerability
- **Security measure** a mechanism for decreasing or eliminating risk
  - E.g., checking IDs at a reception, a fire suppression system



## Quantitative risk assesment

- Numerically estimating the **expected losses**
- Cost-benefit analysis
  - The total cost of a defense should not exceed the anticipated benefit (i.e., the expected loss)
- Disadvantages:
  - Rare incidents are difficult to estimate
  - Vulnerabilities evolve and remain undiscovered
  - Attacker actions are hard to predict
  - Unknown value of intangible assets (e.g., know-how, reputation)



# Qualitative risk assesment

- Categorical rating of risks
- Determine the order in which assets require attention
- Example matrix combining probability and impact:

| C: Cost (impact)         | P: Probability |          |          |        |         |  |
|--------------------------|----------------|----------|----------|--------|---------|--|
|                          | Rare           | Unlikely | Possible | Likely | Certain |  |
| Negligible (very low)    | 1              | 1        | 1        | 1      | 1       |  |
| Limited (low)            | 1              | 2        | 2        | 2      | 2       |  |
| Serious (moderate)       | 1              | 2        | 3        | 3      | 3       |  |
| Severe (high)            | 2              | 2        | 3        | 4      | 4       |  |
| Catastrophic (very high) | 2              | 3        | 4        | 5      | 5       |  |



# Risk assessment – addressing threats

#### Mitigating threats

- Making it harder to take advantage of a threat raises cost/effort for attacker
- E.g., password composition rules to make guessing harder

### Eliminating threats

• Typically eliminate features, decommission systems

#### Tranferring threats

- Letting someone else handle the risk
- E.g., insurance, OAuth "Sign in with Google"

## Accepting risks

• If the costs of the coutnermeasures exceed the expected loss



# Security analysis & adversary modelling



# Security analysis

- From design & development to testing & deployment
- Find design vulnerabilities and overlooked threats
- "What's your threat model?"
  - What are we protecting? What assets have value?
  - What can go wrong? What attacks put the assets at risk?
  - How can we stop or manage damaging actions?
  - How well did we perform the analysis? (Iterate the process)
- Centered on attackers, assests
  - E.g., assets: Things the attackers want, Things you want to protect, Stepping stones to get either of those



# Security analysis methods

- Vulnerability assessment
  - Finding weaknesses in deployed systems
  - Penetration testing (pen testing)
  - Black-box vs. White-box (e.g., source code review)
  - Independent formal security evaluation and certification
- Threat modeling (second part of the lecture)
  - Threat model threats, threat agents, attack vectors
  - Adversary model attributes of the adversary
  - Assumptions about the system, environment, and attackers
  - Good model also specifies what is *out of scope*



## Adversary attributes – Know your enemy

- Goals and objectives intent and motivation
  - Example named motivation levels: 1. curiosity, 2. personal fame, 3. personal gain, 4. national interests
- **Methods** expected types of attacks
- **Capabilities** tools and skills, computing resources, opportunity (e.g., physical access), personnel
  - Example named skill level: 1. script kiddie, 2. undergraduate, 3. expert, 4. specialist
- **Funding level** influences the attributes above
- **Insider or outsider** starting advantage
  - E.g., initial level of access to the system, knowledge of system



# Adversary classes (Paul C. van Oorschot)

- 1. Foreign intelligence (e.g., nation state attackers, government-funded agencies)
- 2. Cyber-terrorists and politically motivated attackers (e.g., hacktivists)
- 3. Industrial espionage (e.g., competitors)
- 4. Organized crime (structured groups)
- 5. Lesser criminals and crackers (script kiddies)
- 6. Malicious insiders (e.g., disgruntled employees)
- 7. Non-malicious employees (e.g., security unaware or curious users)



## Adversary classes (according to me)

- Foreign intelligence (e.g., nation state attackers, government-funded agencies)
- → 4. 2. Organized crime (structured groups)
  - 3. Industrial espionage (e.g., competitors)
    - **2. 4.** Cyber-terrorists and politically motivated attackers (e.g., hacktivists)
    - 5. Lesser criminals and crackers (script kiddies)
    - (6.)1? Malicious insiders (e.g., disgruntled employees)
    - 7. Non-malicious employees (e.g., security unaware or curious users)



## Threat modelling



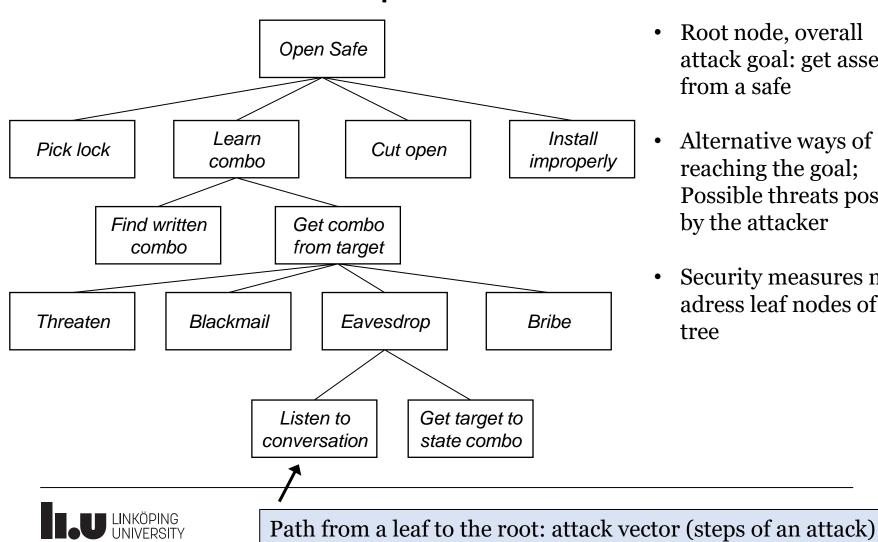
# Threat modeling

- Identify
  - Assets
  - Potential vulnerabilities
  - Threat agents
- Allows estimation of likelihoods and consequences of attacks ⇒ *Risk modelling*
- Threat and risk modeling is used as basis for proposing security measures and mitigations
- Method: *structured brainstorming* 
  - Many tools/approaches exist for aiding in this process



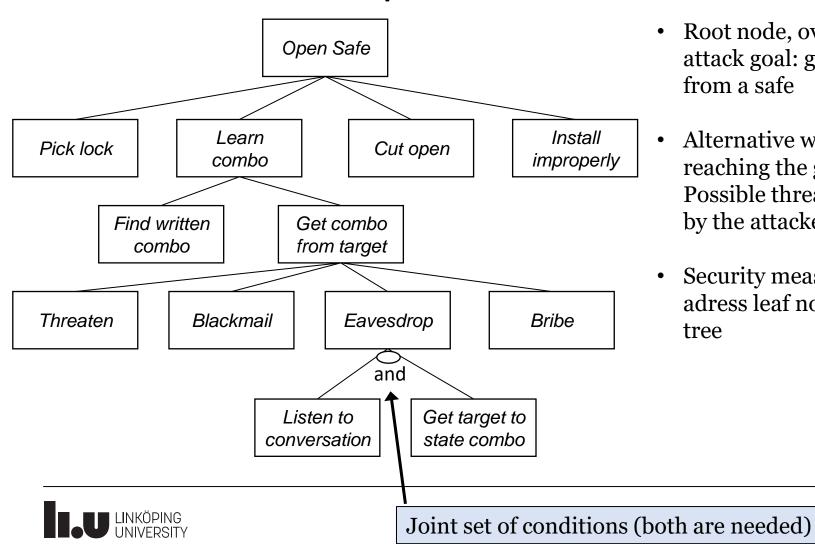
## Threat modeling – checklists

- Lists of well known threats compiled by larger communities from years of experience
- More accessible for beginners
- Disadvantages:
  - General vs. specific deployment of your system
  - False sense of security?
- Cross-reference and combined with other methods




# Threat modeling – attack trees

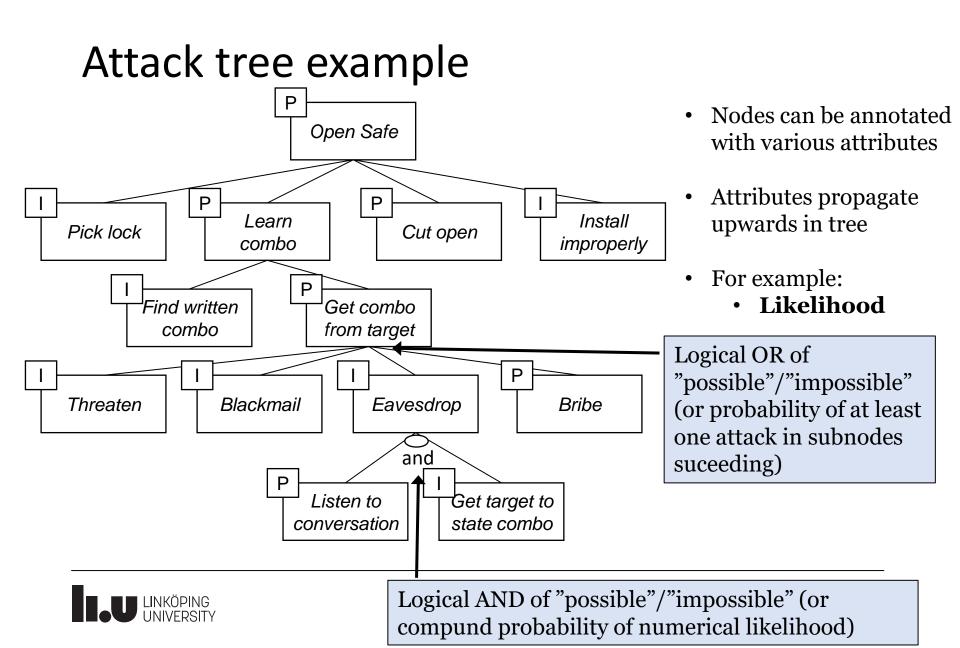
- Attacks on a system in a tree structure
  - *Root node* at the top represents the goal
  - Internal nodes are subtrees ending in *leaf nodes*
  - Lower nodes show *alternative ways* (i.e. OR) of reaching the parent, some can be marked as AND (joint set of conditions)
- Nodes can be annotated
  - Legal/illegal, cost, probability of success, likelihood of attack, required skills and equipment, etc.
  - Mark out infeasible nodes (but keep in the model)
- Think like an attacker, brainstorm and review with colleagues
- Revisit the tree and study the attack vectors and defenses

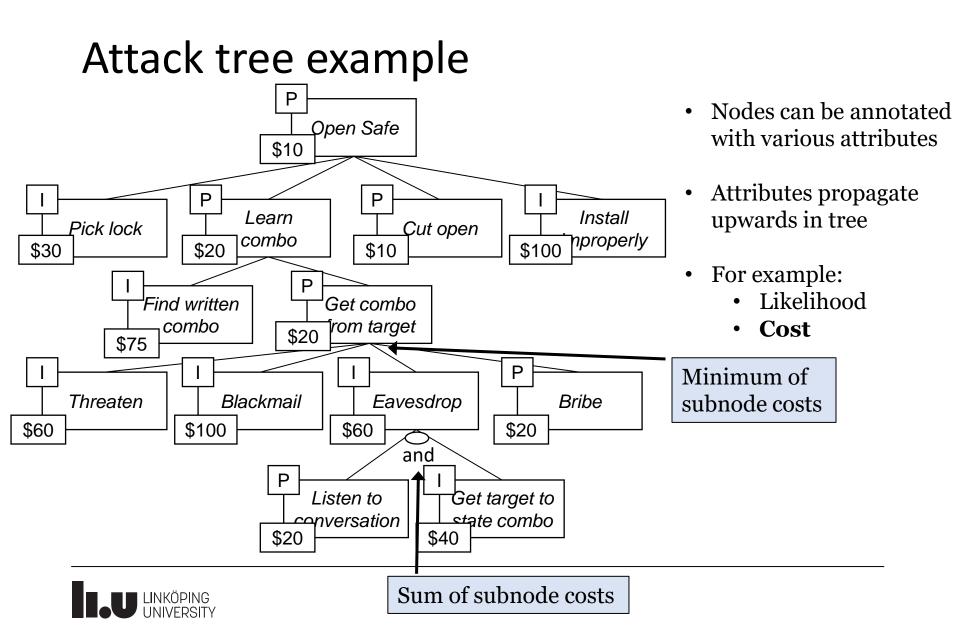



## Attack tree example



- Root node, overall attack goal: get assets from a safe
- Alternative ways of reaching the goal; Possible threats posed by the attacker
- Security measures must adress leaf nodes of the tree


## Attack tree example




Root node, overall attack goal: get assets from a safe

24

- Alternative ways of reaching the goal; Possible threats posed by the attacker
- Security measures must adress leaf nodes of the tree





# Threat modeling – STRIDE 1/3

• **STRIDE** – keywords to stimulate brainstorming

#### 1. Spoofing

- Impersonating someone, pretending to be someone else
- E.g., faking the sender field of an e-mail; impersonating a customer or a website
- Violates authentication

#### 2. Tampering

- Modifying data (in storage or in transit)
- E.g., changing files or DB entries, dropping network packets
- Violates integrity



# Threat modeling – STRIDE 2/3

#### 3. Repudiation

- Denial of an action, not acknowledging responsibility
- E.g., denying approving an expense report
- Violates non-repudiation (actions of users cannot be refuted)

#### 4. Information disclosure

- Allowing access to data to unauthorized users
- E.g., selling company secrets, failing to set up authorization for a database
- Violates confidentiality



# Threat modeling – STRIDE 3/3

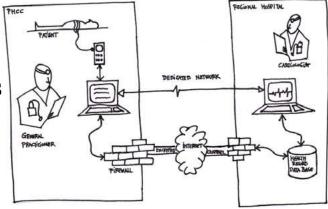
#### 5. Denial of service (DoS)

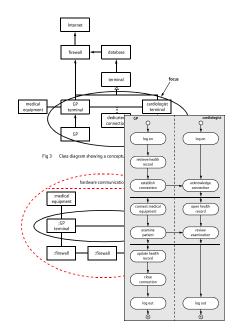
- Preventing a system from providing a service
- E.g., by consuming system resources; a distributed DoS attack uses up all available network connections
- Violates availability

#### 6. Elevation of priviledge

- Doing something not allowed at the current level of authorization
- E.g., user code running with admin priviliges; accessing the business logic directly instead of through the web interface
- Violates authorization




# CORAS


- Method for threat and risk modeling
  - Not necessarily the most well-known method, but good illustration of the steps involved in a security analysis
- Consists of 7 steps
- Read in preparation for the teaching session on Friday and the security modeling assignment:

den Braber et al. (2007). Model-based security analysis in seven steps a guided tour to the CORAS method. *BT Technology Journal*, *25*(1) <u>https://link.springer.com/content/pdf/10.1007/s10550-007-0013-9.pdf</u>



**Step 1** – Experts and clients decide upon which system is to be analyzed and what parts of the system that should be focused upon.





**Step 2** – The system to be analyzed is formalized, assets are identified, high-level risk analysis.

|                    | Ministry<br>of Health<br>(client)           | ,                         |
|--------------------|---------------------------------------------|---------------------------|
| i i                | i i                                         | i                         |
|                    | provision of                                |                           |
| atient's<br>health | telecardiology<br>service                   | \$                        |
|                    | health<br>records telecardiology<br>service | public trust<br>in system |

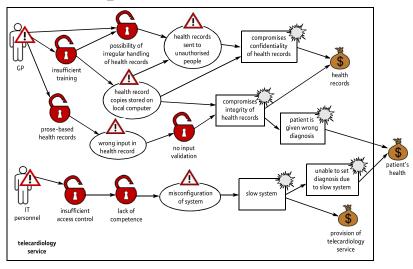
| threat<br>(accidental) | threat<br>ccenario                                                                                                | vulnerability                                       |
|------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Who/what causes it?    | How? What is the incident? What does it harm?                                                                     | What makes it possible?                             |
| Hacker                 | Breaks into the system and steals health records                                                                  | Insufficient security                               |
| Employee               | Sloppiness compromises confidentiality of health<br>records                                                       | Insufficient training                               |
| Eavesdropper           | Eavesdropping on dedicated connection                                                                             | Insufficient protection of connection               |
| System failure         | System goes down during examination                                                                               | Unstable connection/immature technology             |
| Employee               | Sloppiness compromises integrity of health record                                                                 | Prose-based health records (i.e. natural language)  |
| Network failure        | Transmission problems compromise integrity of<br>medical data                                                     | Unstable connection/immature technology             |
| Employee               | Health records leak out by accident —<br>compromises their confidentiality and damages<br>the trust in the system | Possibility of irregular handling of health records |



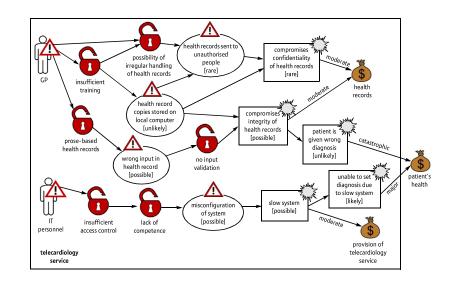
Images from den Braber et al. – Model-based security analysis in seven steps – a guided tour to the CORAS method

| Consequence value                              | Description               |  |  |
|------------------------------------------------|---------------------------|--|--|
| Catastrophic 1000+ health records (HRs) are af |                           |  |  |
| Major                                          | 100-1000 HRs are affected |  |  |
| Moderate                                       | 10-100 HRs are affected   |  |  |
| Minor                                          | 1-10 HRs are affected     |  |  |
| Insignificant                                  | No HR is affected         |  |  |

| Likelihood<br>value | Description <sup>3</sup>                              |  |  |
|---------------------|-------------------------------------------------------|--|--|
| Certain             | Five times or more per year (50-*: 10y = 5-*: 1y)     |  |  |
| Likely              | Two to five times per year (21-49: 10y = 2,1-4,9: 1y) |  |  |
| Possible            | Once a year (6-20: 10y = 0,6-2: 1y)                   |  |  |
| Unlikely            | Less than once per year (2-5: 10y = 0,2-0,5: 1y)      |  |  |
| Rare                | Less than once per ten years (0-1:10y = 0-0,1:1y)     |  |  |


| Asset                               | Importance   | Туре           |
|-------------------------------------|--------------|----------------|
| Health records                      | 2            | Direct asset   |
| Provision of telecardiology service | 3            | Direct asset   |
| Public's trust in system            | (Scoped out) | Indirect asset |
| Patient's health                    | 1            | Indirect asset |

**Step 3** – Prioritize assets, create scales for consequence and likelihood values, create risk evaluation matrix.

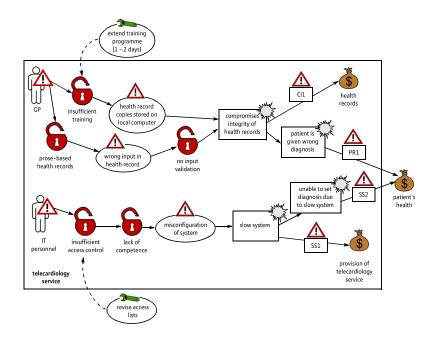

|           |              | Consequence       |                   |                   |                   |                   |
|-----------|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|           | Catastrophic |                   |                   |                   |                   |                   |
|           | Rare         | Acceptable        | Acceptable        | Acceptable        | Acceptable        | Must be evaluated |
| ŋcy       | Unlikely     | Acceptable        | Acceptable        | Acceptable        | Must be evaluated | Must be evaluated |
| Frequency | Possible     | Acceptable        | Acceptable        | Must be evaluated | Must be evaluated | Must be evaluated |
| Free      | Likely       | Acceptable        | Must be evaluated | Must be evaluated | Must be evaluated | Must be evaluated |
|           | Certain      | Must be evaluated |



**Step 4** – Create threat diagrams through structured brainstorming (workshop).



# **Step 5** – Estimate risks (consequence and likelihood)






# **Step 6** – Risk evaluation, estimates are confirmed or adjusted.

|            |          | Consequence   |       |          |       |              |  |
|------------|----------|---------------|-------|----------|-------|--------------|--|
|            |          | Insignificant | Minor | Moderate | Major | Catastrophic |  |
| р          | Rare     |               |       | CC1      |       |              |  |
| hoo        | Unlikely |               |       |          |       | PR1          |  |
| Likelihood | Possible |               |       | CI1, SS2 |       |              |  |
|            | Likely   |               |       |          | SS1   |              |  |
|            | Certain  |               |       |          |       |              |  |

#### **Step** 7 – Risk treatment





# Checking the model

- Modeling iterative process, evolving threat models
- Invalid assumptions and focusing on wrong threats
- Real world outcomes of a security policy:
  - Defenses prevent policy violations, and the policy is complete w.r.t. the security needs of the organization
  - Defenses fail to support the policy, goals are not met
  - The policy fails to capture the actual security needs of the organization, even correctly implemented defenses may be insufficient



# Security design principles



# Security design principles

- Verify first (before trusting)
  - "Trust, but verify"
- Security by design



- Security awareness since early design stage
- Specify design goals and assumptions, who is trusted and not trusted, what is out of scope

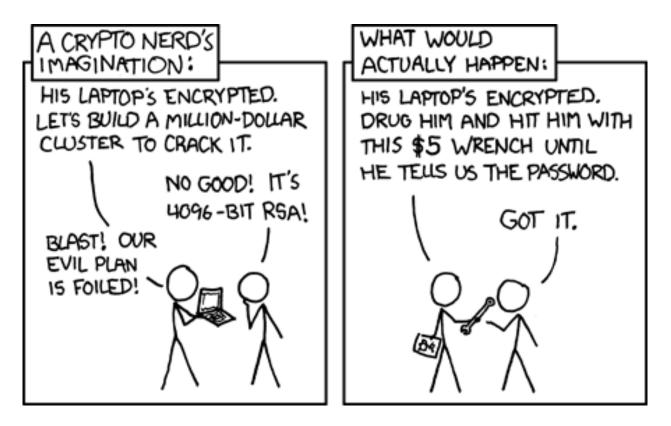
#### Design for evolution

- Re-evaluate effectiveness of security mechanisms, be ready to update designs as needed
- Algorithm agility upgrading crypto algorithms



# Selected security design principles 1/2

- **Simplicity and necessity** keep designs as simple & small as possible; keep only essential functionality
  - Minimizes attack surface (possible attack vectors)
- Safe defaults defaults often go unchanged
  - Access control deny-by-default (whitelist over blacklist)
  - Fail-safe systems "closed" when they fail
- **Open design** don't rely on secret designs, attacker ignorance, "security by obscurity"
- **Least privilege** allocate the fewest privileges needed for the shortest duration possible




# Selected security design principles 2/2

- **Time tested tools** expert-built security tools
  - Don't implement custom crypto primitives and protocols
- Least surprise security mechanisms should behave as users expect (users' mental models)
- **User buy-in** users should be motivated to use security mechanisms
  - User experience, convenient, clearly beneficial
- **Defense in depth** defenses built in multiple layers
  - Avoid single point of failure; strengthen the weakest link first
- More principles in Ch. 1.7 of *Computer Security and the Internet*



### Weakest link: "Rubber-hose cryptanalysis"



https://xkcd.com/538/



