TDDE49 Information security concepts

Ulf Kargén ulf.kargen@liu.se

Recommended literature

- Computer Security and the Internet
 - by Paul C. van Oorschot; first edition (2020)
 - https://people.scs.carleton.ca/~paulv/toolsjewels.html
 - Full text via LiU library: https://liu.se/en/library
- Security Engineering by Ross Anderson
 - Second edition (2008) is free from the author
 - https://www.cl.cam.ac.uk/~rja14/book.html
 - Third edition (2020) in LiU library (not online)
- Threat Modeling by Adam Shostack
 - 2014, in LiU library, online access for students

Information security goals

Information security goals

- Typically **defense** against **intentional** misuse
- Unathorized malicious actions and their consequences
 - Prevention of such actions
 - Detection and recovery from attacks
- Main goals: confidentiality, integrity, availability
- Attacker is often a few steps ahead unknown threats
- Protection against unintentional damage and modification also a requirement, but not the focus of computer security
 - E.g., reliability and redundancy

Confidentiality

- Goal: limiting access to non-public information, data is made available only to authorized users
- Stored and transmitted data is not revealed to unapproved (unauthorized) users
- Loss of confidentiality consequences:
 - Unauthorized data disclosure can lead to loss of trust in the organization, legal liability, fines, etc.
 - Example: Medical records available on the public Internet
- Technical means of protection:
 - Data encryption, access control

Integrity

- Goal: accuracy and completeness of information
- Protection against unauthorized data modification
- Loss of integrity consequences:
 - Data is no longer valid (reflecting reality) and reliable
 - Example: A patient is able to change their own prescription
- Technical means of protection:
 - Message authentication codes, secure hash algorithms

Availability

- Goal: the system is accessible by authorized users when needed
- Protection against unauthorized deletion of data and disruption of services
- Loss of availability consequences:
 - Loss of productivity, inability to reach business goals
 - Example: A doctor cannot read patient's past diagnoses
- Technical means of protection:
 - · Reliability and redundancy, backup and recovery

Related goals and concepts

- Privacy
 - Confidentiality of personally sensitive information
- Authenticity of data
 - Integrity of origin the author of the data is reliably known
- Accountability (and audit)
 - Ability to assign responsibility for past actions
 - E.g., transaction log of actions and identities
- Non-repudiation
 - Actions and commitments cannot be denied (repudiated)

Information security goals (CIA) summary

- Confidentiality
 - Only authorized users can access the non-public information
 - Data in storage and transit is not undesirably revealed
- Integrity
 - Accuracy and completeness of information
 - Data remains unaltered, except by authorized users
- Availability
 - The system is accessible by authorized users when needed
 - Protection against unauthorized deletion and disruption
- Sometimes includes Accountability and Non-repudiation
 - Actions attributed to users who cannot deny responsibility

Access control

Access control

- Restricts access to resources to authorized users
- Enables auditing of actions
- Possible implementation access control list (ACL)
 - Each system resource (object) is assigned a list of permissions
 - Each list specifies which users (subjects) have access to the object and what operations are allowed on the object
 - Example: filesystem of an operating system

Role-based access control (RBAC)

- Authorization can be based on a role; each role is assigned permissions, roles are assigned to users
 - Easier to assign a single role to a user than to manage the same set of permissions repeatedly for many users
 - Easier to manage the permissions of a role than to change the same permission repeatedly for many users
 - Users can have multiple roles or groups

Example:

- 1. The *manager* role has access to personnel files, but not to web server configuration.
- 2. IT-admin role has access to web configuration, but not to personnel files.

But: If manager and IT-admin is the same person, he/she has access to both

Access control procedure

- 1. Identification Making a claim about someone's identity
 - E.g., stating your name; presenting a username to a website
- 2. Authentication Verification of a claim of identity
 - E.g., comparing a photo on your ID card to your face; checking if a username and a password match
- 3. Authorization Determining the permitted actions
 - E.g., which features are accessible
 - Defined by policies (e.g., only the system administrator is allowed to install new programs), enforced by access control mechanisms (e.g., file system permissions: read, write, execute)

User authentication

User authentication

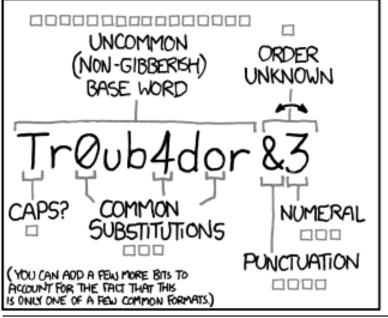
- Verification of a claim of identity
- Allows making access control decisions (authorization)
- 1. Something you know
 - E.g., a password, a PIN, an answer to a security question
- 2. Something you have
 - E.g., the LiU card, a credit card, a key to your apartment
- 3. Something you are
 - Biometrics, e.g., based on fingerprint/iris/face recognition
 - Something you do behavior (handwriting, voice recognition, ...)
 - Where you are location based authentication (e.g., geolocation)

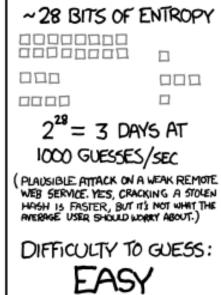
Multi-factor authentication

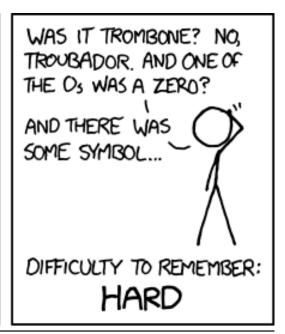
- Two methods used in parallel
- Typically from different categories (not 2 passwords)
- Examples:
 - Password and a one-time PIN received via SMS/from a challenge-response calculator/from a push notification
 - Payment terminals, ATM chip-card and a PIN
 - Password and a biometric
- Mandatory with payment service providers in the EU
- Easy to setup with phone apps for web services
 - (e.g., OTP with Google, Microsoft authenticator)

Something you know – passwords 1/2

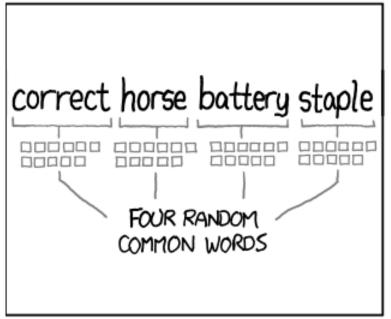
- Typical account with a username and a password
- Some advantages:
 - Easy to use and understand
 - No extra device required no extra cost
 - Easy to change or recover if lost
 - Quick (especially with password managers)
 - Easy to delegate (although users may forget to change the password to take back the delegation)
 - Well studied (user behavior, attacks)



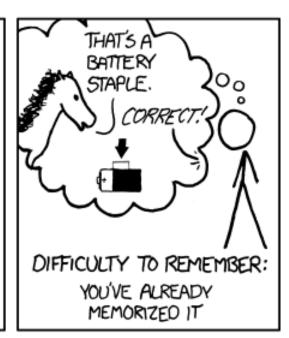

Something you know – passwords 2/2


- Password disadvantages usability issues:
 - Password re-use across accounts is insecure
 - Password is never more secure than the *least* secure site/system where you reused it!
 - Avoid writing down your password
 - Make it easy to remember, but difficult to guess
 - Complicated policies length, special characters
 - Expiration policies (e.g., change every 90 days) outdated and counterproductive

Trouble with passwords



THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.


https://xkcd.com/936/

An option for choosing a password

https://xkcd.com/936/

Something you have

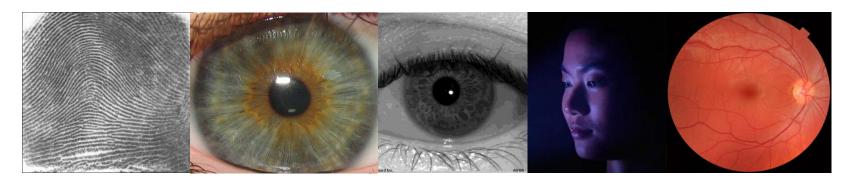
- Keys, badges, tokens, smart cards
- Can be lost, stolen
 - Difficult (costly) to replace, but loss can be quickly detected
- Some can be copied
 - E.g., credit card skimming copy of the magnetic stripe; radio eavesdropping on RFID key cards; some car keys
- Cryptographic smartcards have more abilities (mobile phone SIM, credit card, also in ID cards, passports, ...)

<- RFID card
Photo Peter Modin

ID with a cryptographic Smartcard -> Photo by Skatteverket

Something you have – tokens

- Devices that produce one time passwords (OTP)
- Can offer strong cryptography and cannot be copied
 - Often extremely difficult to copy even with physical access
- Cryptographic functions with a secret key applied to a unique challenge and/or the current time
- Challenge-response token (e.g., bank token)
- Time-based token (e.g., RSA SecurID)
- Still vulnerable to phishing


By I. Hölscher

By A. Klink

Something you are – biometrics 1/3

- Using biological properties for identification
- Identification vs. verification of identity
 - Identification identify a user from all possible users
 - Verification only e.g., in a combination with a user ID/PIN
- Fingerprint, iris (visible/infrared light), face, retina

By M. Goldthwaite

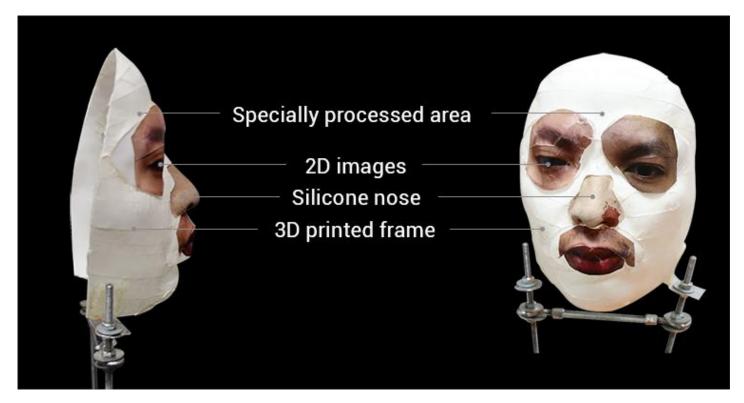
By J. Daugman

By Apple

By M. Häggström

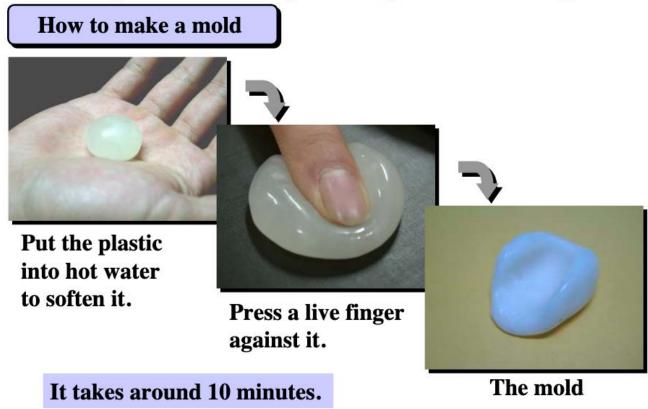
Something you are – biometrics 2/3

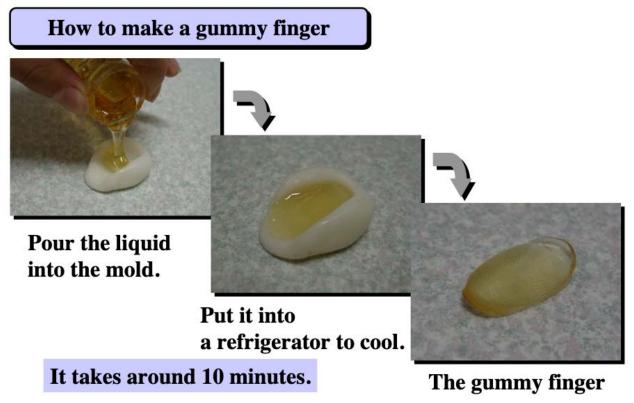
- Advantages
 - Usability nothing to carry, no cognitive burden
 - Cannot be forgotten
- Some challenges and disadvantages
 - Variable (slightly different each time you measure)
 - Not secret and easily acquired, yet also cannot be changed
 - Failure to enroll some users cannot use the method easily
 - Failure to capture e.g., cannot be read with wet fingers
 - Requires a fallback mechanism for such cases
 - Can falsely reject legitimate and falsely accept ilegitimate users


Something you are – biometrics 3/3

- Requirements for biometrics
 - Unique The property is distinct for different individuals
 - Permanent The property cannot change over time
 - Universal Almost everyone has such property
 - Collectable It is possible to easily measure the property
 - Difficult to circumvent Hard to fool the system
- In summary, biometrics are suitable as an additional (second factor) authentication or used under supervision (e.g., security checkpoint)

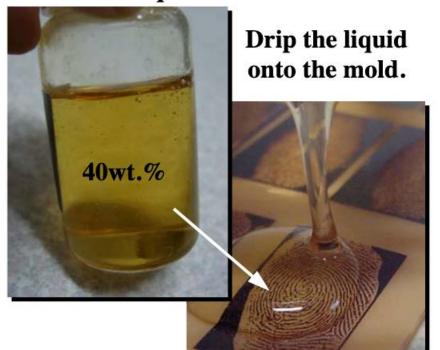
Fooling biometrics


• 3D-printed mask for FaceID on an iPhone X in 2017 by BKAV


Fooling biometrics – Tsutomu Matsumoto 1/2

Making an Artificial Finger directly from a Live Finger

Fooling biometrics – Tsutomu Matsumoto 2/2 Making an Artificial Finger directly from a Live Finger



• Attack from 2002, can be defeated by a liveness check

Fooling biometrics – fake fingerprints

Gelatin Liquid

Put this mold into a refrigerator to cool, and then peel carefully.

• Fingerprint image, laser printer, glue; fools optical fingerprint reader; Tsutomu Matsumoto 2002

User authentication summary

- Verification of identity using different methods:
- 1. Something you know
 - E.g., a password, a PIN, an answer to a security question
- 2. Something you have
 - E.g., a passport, BankID, token device ("bankdosa")
- 3. Something you are
 - Biometrics, e.g., based on fingerprint/iris/face recognition
- Multi-factor authentication (MFA, 2FA for 2-factor auth.)
 - E.g., password and a one-time password from a device

Common attacks

Know Thy Enemy

A few common attack scenarios (in no particular order):

- 1. Password attacks
 - a) Brute-force
 - b) Dictionary attacks
 - c) Credential stuffing
- 2. Social engineering Phishing, Spear phishing
- 3. Malware Ransomware, Spyware, etc.
- 4. Software exploits

Password attacks – Brute force

- A **search attack** is the most basic form of brute force.
- Given a character set (e.g. [abcdefghijklmnopqrstuvwxyz]) and a password length, try every possible combination
- For example, lower case letters, 3 character password:
 - aaa
 - aab
 - aac
 - ...
- Slow, but it will at some point crack the password.

Password attacks – Dictionary attacks

- **Dictionary attacks** exploit the fact that it is common for users to pick passwords that are easy to remember
 - The password "123456789ABC" is a lot more common than "frex#be!?Vu6adR"...
- Use a predetermined list of words (a dictionary) and try these as passwords
 - An actual dictionary of common words
 - Even better: A leaked set of real passwords

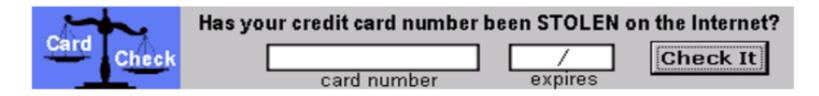
Password attacks – Dictionary attacks

1.	123456	4.1%	11.	login	0.2%
2.	password	1.3%	12.	welcome	0.2%
3.	12345	0.8%	13.	loveme	0.2%
4.	1234	0.6%	14.	hottie	0.2%
5.	football	0.3%	15.	abc123	0.2%
6.	qwerty	0.3%	16.	121212	0.2%
7.	1234567890	0.3%	17.	123654789	0.2%
8.	1234567	0.3%	18.	flower	0.2%
9.	princess	0.3%	19.	passw0rd	0.2%
10.	solo	0.2%	20.	dragon	0.1%

"Skyhigh analyzed 11 million passwords for cloud services that are for sale on Darknet..." (2015)

Password attacks – Dictionary attacks

- **Rule-based search**: make up some transformation rules that you apply to each candidate password.
- Example: use the following transformations: *duplicate*, *toggle case*, *replace e with 3*.
 - Assume we want to test the password: *pressure*, then we would test:
 - pressure
 - pressurepressure
 - PRESSURE
 - pr3ssur3
 - *etc...*


Password attacks – Credential stuffing

- A variant of dictionary attacks
- Attacker uses a list of known username/password combinations **from an earlier breach** and tries every entry in the list on another site
- Exploits the fact that many people use the same username and password on several sites

Social engineering

- Manipulation of people as part of a cyberattack
 - Divulge passwords or sensitive information
 - Performing actions to facilitate a break-in into IT systems
- **Phishing** send email to trick the receiver into, e.g.:
 - Give up passwords or personal info
 - Download malicious software

Social engineering – Spoofing

- Attackers are getting increasingly good at spoofing official-looking emails from, e.g., employers, e-commerce sites, government institutions, postal service, etc.
 - Might link to a fake login page which steals your password
 - Common to use URLs that are similar-looking to legitimate URLs
 - Can use stolen certificates or hacked sites to have TLS encryption ("padlock symbol")
 - Can even use tricks with *homographs*:
 - For example, the Latin letters "e" and "a" are replaced with the Cyrillic "e" and "a": wikipedia.org

Social engineering – Spear phishing

- Instead of mass-mailing phishing emails and hoping that someone takes the bait **use targeted attacks**
 - CEO
 - IT-admin
 - ... or anyone who can (inadvertently) help attackers to get a foothold into system
- Typically entails surveilling target for an extended period of time to learn, e.g.:
 - Role and responsibilities in organization
 - Contacts
 - Interests (personal, professional)
- Send tailor-made phishing email to pique target's interest

Malware

- Software designed with the *intention* of causing some harmful effects.
 - Spyware
 - Botnet clients
 - Ransomware
 - ...
- Most malware today are *trojans* requires some action from the victim
 - Download "free" pirated software
 - Spoofed emails
 - Open malicious email attachment
 - "You need to install this important software update..."

Malware

- **Spyware** is designed to steal, e.g., passwords, credit card numbers, etc.
- **Botnet clients** silently turn victim machines into a remotely controlled member of a *botnet*
 - Victim is often unaware of the infection...
 - ...but the attacker can remotely instruct all infected machines to perform denial-of-service attacks against websites
 - Flood website with repeated connection attempts from thousands of hijacked computers
 - Often used for extortion or hacktivism

Malware – Ransomware

- Encrypt all files on hard drive. Demand ransom to be paid for restoring the system.
- Might also exfiltrate sensitive files can be used as leverage to persuade victim to pay up
- Some attacks use the "shotgun approach" send spam emails with, e.g., malicious links
 - Some will fall for it and get infected
 - Can also spread over a network to infect vulnerable machines
 - Sometimes with inadvertent disastrous effects ...

Malware – Ransomware

- However, targeted attacks are becoming increasingly common
 - Carefully planned operations by professional hacker groups
 - Often executed over the course of several months
- Might use spear phishing to gain initial foothold into system
- Infiltrate other systems over an extended period of time until attackers are ready
 - Cripple entire IT-infrastructure and demand ransom

Software exploits

- Programs can have bugs (programming mistakes) that allows manipulating their behavior
 - Such bugs are known as *software vulnerabilities*
- By providing a specially-crafted input to a vulnerable program, attackers can sometimes "trick" the program into executing the attacker's commands
 - For example, download and install malware
- The specific procedure used to trigger a vulnerability is called an *exploit*

Software exploits

Can be used to spread malware

- Malicious e-mail attachments (PDF, Word, etc.)
 - When opened with a vulnerable document viewer, installs malware
- Malicious web page enough to *view* the web page with an old, vulnerable version of a web browser
- Can also be used to spread malware over a network (e.g., old version of Windows with file-sharing enabled)

This is why most modern software have auto-update functionality!

- However, not all software can be updated
- For example, medical equipment cannot modify in any way (including software) without voiding safety certification
 - These things are often PC computers "under the hood", running an old Windows version...

