TDDE49 Databases Topic 7: Information security concepts

Matus Nemec matus.nemec@liu.se VT2 2021



### **Recommended literature**

#### Computer Security and the Internet

- by Paul C. van Oorschot; first edition (2020)
- <u>https://people.scs.carleton.ca/~paulv/toolsjewels.html</u>
- Full text via LiU library: <u>https://liu.se/en/library</u>
- Security Engineering by Ross Anderson
  - Second edition (2008) is free from the author
  - <u>https://www.cl.cam.ac.uk/~rja14/book.html</u>
  - Third edition (2020) in LiU library (not online)
- Threat Modeling by Adam Shostack
  - 2014, in LiU library, online access for students



### Information security goals



### Information security goals

- Typically **defense** against **intentional** misuse
- Unathorized malicious actions and their consequences
  - Prevention of such actions
  - Detection and recovery from attacks
- Main goals: confidentiality, integrity, availability
- Attacker is often a few steps ahead unknown threats
- Protection against unintentional damage and modification also a requirement, but not the focus of computer security
  - E.g., reliability and redundancy



## Confidentiality

- Goal: limiting access to non-public information, data is made available only to authorized users
- Stored and transmitted data is not revealed to unapproved (unauthorized) users
- Loss of confidentiality consequences:
  - Unauthorized data disclosure can lead to loss of trust in the organization, legal liability, fines, etc.
  - Example: Medical records available on the public Internet
- Technical means of protection:
  - Data encryption, access control



## Integrity

- Goal: accuracy and completeness of information
- Protection against unauthorized data modification
- Loss of integrity consequences:
  - Data is no longer valid (reflecting reality) and reliable
  - Example: A patient changes their prescription
- Technical means of protection:
  - Message authentication codes, secure hash algorithms
  - Error detection/correction codes can be easily recomputed and **do not** protect against malicious data modification
  - So are outdated hash algorithms insufficient: MD5, SHA-1



# Availability

- Goal: the system is accessible by authorized users when needed
- Protection against unauthorized deletion of data and disruption of services
- Loss of availability consequences:
  - Loss of productivity, inability to reach business goals
  - Example: A doctor cannot read patient's past diagnoses
- Technical means of protection:
  - Denial of Service (DoS) protection
  - Reliability and redundancy, backup and recovery



### Related goals and concepts

- Privacy
  - Confidentiality of personally sensitive information
- Authenticity of data
  - Integrity of origin the author of the data is reliably known
- Accountability (and audit)
  - Ability to assign responsibility for past actions
  - E.g., transaction log of actions and identities
- Non-repudiation
  - Actions and commitments cannot be denied (repudiated)
  - E.g., cryptographic signature (limited access to signing keys)



### Information security goals (CIA) summary

- Confidentiality
  - Only authorized users can access the non-public information
  - Data in storage and transit is not undesirably revealed
- Integrity
  - Accuracy and completeness of information
  - Data remains unaltered, except by authorized users
- Availability
  - The system is accessible by authorized users when needed
  - Protection against unauthorized deletion and disruption
- Sometimes includes Accountability and Non-repudiation
  - Actions attributed to users who cannot deny responsibility



#### Access control



### Access control

- Restricts access to resources to authorized users
- Enables auditing of actions
- Possible implementation access control list (ACL)
  - Each system resource (object) is assigned a list of permissions
  - Each list specifies which users (subjects) have access to the object and what operations are allowed on the object
  - Example: filesystem of an operating system
  - Users can be assigned to groups



### Role-based access control (RBAC)

- Authorization can be based on a role; each role is assigned permissions, roles are assigned to users
  - E.g., teacher in a course X can give final grades for course X
  - Easier to assign a single role to a user than to manage the same set of permissions repeatedly for many users
  - Easier to manage the permissions of a role than to change the same permission repeatedly for many users
- Users can have multiple roles or groups
- RBAC also enables auditing of actions
  - Accountability is based on identity
  - Group accountability is ineffective



#### Access control procedure

- 1. Identification Making a claim about someone's identity
  - E.g., stating your name; presenting a username to a website
- 2. Authentication Verification of a claim of identity
  - E.g., comparing a photo on your ID card to your face; checking if a username and a password match
- 3. Authorization Determining the permitted actions
  - E.g., which features are accessible
  - Defined by policies (e.g., only the system administrator is allowed to install new programs), enforced by access control mechanisms (e.g., file system permissions: read, write, execute)



#### User authentication



### User authentication

- Verification of a claim of identity
- Allows making access control decisions: authorization
- 1. Something you know
  - E.g., a password, a PIN, an answer to a security question
- 2. Something you have
  - E.g., the LiU card, a credit card, a key to your apartment
- 3. Something you are
  - Biometrics, e.g., based on fingerprint/iris/face recognition
- Something you do behavior (handwriting, voice recognition, ...)
- Where you are location based authentication (e.g., geolocation)



### Something you know – passwords 1/2

- Typical account with a **username** and a **password**
- Some advantages:
  - Easy to use and understand
  - No extra device required no extra cost
  - Easy to change or recover if lost
  - Quick (especially with password managers)
  - Easy to delegate (although users may forget to change the password to take back the delegation)
  - Well studied (user behavior, attacks)



### Something you know – passwords 2/2

- Password disadvantages usability issues:
  - Password re-use across accounts is insecure
  - Do not write down your password
  - Make it easy to remember, but difficult to guess
  - Complicated policies length, special characters
  - Expiration policies (e.g., change every 90 days)
    outdated and counterproductive
- E.g., LiU tips on passwords: <u>https://insidan.liu.se/it/it-sakerhet/tips-for-ett-sakert-losenord?l=en</u>
- Look for more resources before you implement!



#### Trouble with passwords



THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

https://xkcd.com/936/



#### An option for choosing a password



https://xkcd.com/936/



### **Password stealing**



- Phishing: asking users to log in under false pretense
- Spoofing: genuine-looking fake URL, login screen
- Social engineering: targeted attacks
- Malware: keyloggers; also physical ->
- Physical access: shoulder surfing
- Password reuse: Have I Been Pwned?
  - <u>https://haveibeenpwned.com/</u>





### A case for password managers

- Phishing is getting better and difficult to detect
  - Attackers use TLS encryption ("green lock") and other tricks
  - Example: internationalized domain name (IDN) homograph attack; the Latin letters "e" and "a" are replaced with the Cyrillic "e" and "a": **Wikipedia.org**
  - A password manager automatically fills in the password only at the genuine website
- Secure passwords are difficult to remember
  - A password manager generates a unique random one
- Open-source options, e.g., KeePass: <u>https://keepass.info/</u>
  - Beware of fakes, e.g., keepass (dot) com



### Something you have

- Keys, badges, tokens, smart cards
- Can be lost, stolen
  - Difficult (costly) to replace, but loss can be quickly detected
- Some can be copied
  - E.g., credit card skimming copy of the magnetic stripe; radio eavesdropping on RFID key cards; some car keys
- Cryptographic smartcards have more abilities (mobile phone SIM, credit card, also in ID cards, passports, ...)



### Something you have – tokens

- Devices that produce one time passwords (OTP)
- Can offer strong cryptography and cannot be copied
  - Often extremely difficult to copy even with physical access
- Cryptographic functions with a secret key applied to a unique challenge and/or the current time
- Challenge-response token (e.g., bank token)
- Time-based token (e.g., RSA SecurID)
- Still vulnerable to phishing



By I. Hölscher



#### Something you have – web authentication

- Tokens that support various web standards
  - Universal 2nd Factor (U2F), FIDO2
  - One-time Password (OTP) algorithms
  - Digital signatures, e-mail encryption, etc.
  - Communicate via USB or NFC (Near-field communication)
- E.g., SoloKey, YubiKey
- Can be costly (20 to 60 EUR)





### Something you are – biometrics 1/3

- Using biological properties for identification
- Identification vs. verification of identity
  - Identification identify a user from all possible users
  - Verification only e.g., in a combination with a user ID/PIN
- Fingerprint, iris (visible/infrared light), face, retina



By M. Goldthwaite By J. Daugman By Apple By M. Häggström



### Something you are – biometrics 2/3

- Advantages
  - Usability nothing to carry, no cognitive burden
  - Cannot be forgotten
- Some challenges and disadvantages
  - Variable (slightly different each time you measure)
  - Not secret and easily acquired, yet also cannot be changed
  - Failure to enroll some users cannot use the method easily
  - Failure to capture e.g., cannot be read with wet fingers
  - Requires a fallback mechanism for such cases
  - Can falsely reject legitimate and falsely accept ilegitim. users



### Something you are – biometrics 3/3

- Requirements for biometrics
  - Unique The property is distinct for different individuals
  - Permanent The property cannot change over time
  - Universal Almost everyone has such property
  - Collectable It is possible to easily measure the property
  - Difficult to circumvent Hard to fool the system
- In summary, biometrics are suitable as an additional (second factor) authentication or used under supervision (e.g., security checkpoint)



### **Fooling biometrics**

• 3D-printed mask for FaceID on an iPhone X in 2017 by BKAV





#### Fooling biometrics – Tsutomu Matsumoto 1/2

Making an Artificial Finger directly from a Live Finger





#### Fooling biometrics – Tsutomu Matsumoto 2/2

Making an Artificial Finger directly from a Live Finger



• Attack from 2002, can be defeated by a liveness check

### Fooling biometrics – fake fingerprints

#### **Gelatin Liquid**



• Fingerprint image, laser printer, glue; fools optical fingerprint reader; Tsutomu Matsumoto 2002



## Multi-factor authentication

- Two methods used in parallel
- Typically from different categories (not 2 passwords)
- Examples:
  - Password and a one-time PIN received via SMS/from a challenge-response calculator/from a push notification
  - Payment terminals, ATM chip-card and a PIN
  - Password and a biometric
- Mandatory with payment service providers in the EU
- Easy to setup with phone apps for web services
  - (e.g., OTP with Google, Microsoft authenticator)



### User authentication summary

- Verification of identity using different methods:
- 1. Something you know
  - E.g., a password, a PIN, an answer to a security question
- 2. Something you have
  - E.g., a passport, BankID, token device ("bankdosa")
- 3. Something you are
  - Biometrics, e.g., based on fingerprint/iris/face recognition
- Multi-factor authentication (MFA, 2FA for 2-factor auth.)
  - E.g., password and a one-time password from a device



