multiple access protocol

- □ distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination

Ideal Multiple Access Protocol

Broadcast channel of rate R bps

- 1. when one node wants to transmit, it can send at rate R.
- 2. when M nodes want to transmit, each can send at average rate R/M
- 3. fully decentralized:
 - o no special node to coordinate transmissions
 - o no synchronization of clocks, slots
- 4. simple

←system → | ←ype of protoco→ | ←type of MAG→ |

OFDMA: 4/5G, WiFi6; Bluetooth;

satellite

WiFi; satellite; control plane: 4/5G, Bluetooth

(and many wired technologies)

Bluetooth, satellite

(and many wired technologies)

Channel Partitioning MAC protocols: TDMA

TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = pkt trans time) in each round
- unused slots go idle

Example 6-station LAN:

• 1,3,4 have pkt, slots 2,5,6 idle

Channel Partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle

Example 6-station LAN:

1,3,4 have pkt, frequency bands 2,5,6 idle

FDM: Frequency Division Multiplexing

OFDM: Orthogonal FDM

OFDM: Subcarriers

Wireless Jargon:
"carrier" ~ "channel"
"subcarrier" ~ "subchannel"

OFDMA: subcarriers, time

OFDMA: symbols

OFDMA: resource blocks

resource block (RB):

- symbols grouped into resource blocks
- 84 symbols (7 symbols/slot over 12 subcarriers) in 4G
- smallest unit of data that can be sent to (assigned to) a user

OFDMA: resource blocks

Base station decides which RBs get assigned (over all frequencies) to which devices at 1 msec intervals

From 4G LTE to 5G New Radio (NR)

Commonalities, differences:

4G, 5G both use OFDMA

Subcarrier bandwidths:

• 46: 15 kHz

• 5*G*: 15, 30, 60, 120 kHz

Max carrier bandwidth:

• 46: 20 MHz

• 56: 100 MHz

4G, 5G: resource blocks (RB)

 smallest scheduling unit of transmission to device

◆system→| |◆ype of protoco→| |◆type of MAG→|

Random Access Protocols

- When node has packet to send
 - transmit at full channel data rate R.
 - o no a priori coordination among nodes
- two or more transmitting nodes → "collision"
- random access MAC protocol specifies:
 - 1. how to detect collisions
 - 2. how to recover from collisions (e.g., via delayed retransmissions)

Examples of random access MAC protocols:

- slotted ALOHA
- ALOHA
- CSMA, CSMA/CD, CSMA/CA

- □ all frames same size
- time divided into equal size slots (time to transmit 1 frame)
- nodes start to transmit only slot beginning

- □ all frames same size
- □ time divided into equal size slots (time to transmit 1 frame)
- nodes start to transmit only slot beginning
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

- □ all frames same size
- □ time divided into equal size slots (time to transmit 1 frame)
- nodes start to transmit only slot beginning
- nodes are synchronized
- □ if 2 or more nodes transmit in slot, all nodes detect collision

Assumptions:

- □ all frames same size
- □ time divided into equal size slots (time to transmit 1 frame)
- nodes start to transmit only slot beginning
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

Operation:

- when node obtains fresh frame, transmits in next slot
 - if no collision: node can send new frame in next slot
 - if collision: node retransmits frame in each subsequent slot with prob. p until success

<u>Pros</u>

- single active node can continuously transmit at full rate of channel
- highly decentralized: only slots in nodes need to be in sync
- □ simple

<u>Cons</u>

- collisions, wasting slots
- idle slots
- nodes may be able to detect collision in less than time to transmit packet
- clock synchronization

Slotted Aloha efficiency

Efficiency: long-run fraction of successful slots (many nodes, all with many frames to send)

- suppose: N nodes with many frames to send, each transmits in slot with probability p
- prob that given node has success in a slot = p(1-p)^{N-1}
- prob that any node has a success = Np(1-p)^{N-1}
- max efficiency: find p* that maximizes
 Np(1-p)^{N-1}
- for many nodes, take limit of Np*(1-p*)^{N-1} as N goes to infinity, gives:

Max efficiency = 1/e = .37

At best: channel used for useful transmissions 37% of time!

```
Slotted ALOHA
- N nodes with many frames to send

- each transmits with probability p (in a slot)

Consider a single (arbitrary) slot

Pr (a given node ) = p(1-p)

(successfully transmits)
 Pr (any node is successful) = Np(1-p)
    1: What is optimal P?
```

Pr (any node is successful) = Np(1-p) (I)

Q: What is optimal p?

Pr (any node is successful) =
$$Np(1-p)^{N-1}$$
 (I)

Q: What is optimal p ?

$$\frac{d}{dp}(Np(1-p)^{N-1}) = N(1-p)^{N-1} - N(N-1)p(1-p)^{N-2}$$

$$\frac{d}{dp}() = 0 \Rightarrow (1-p^*) = (N-1)p^*$$

$$\Rightarrow p^* = 1/N$$

Pr (any node is successful) =
$$Np(1-p)^{N-1}$$
 (I)

Q: What is optimal p ?

$$\frac{d}{dp}(Np(1-p)^{N-1}) = N(1-p)^{N-1} - N(N-1)p(1-p)^{N-2}$$

$$\frac{d}{dp}() = 0 \Rightarrow (1-p^*) = (N-1)p^*$$

$$\Rightarrow p^* = 1/N$$
Insert into equation (T):

$$Pr(\text{any node is successful}) = N \frac{1}{N}(1-\frac{1}{N})^{N-1} = (1-\frac{1}{N})^{N-1}$$

Pr (any nocle is successful) =
$$N - (1 - \frac{1}{N})^{N-1} = (1 - \frac{1}{N})^{N-1}$$

Example: with $N=2$, we have $Pr()=1/2$

Pr (any node is successful) =
$$N = N = (1 - \frac{1}{N})^{N-1}$$

Example: with $N = 2$, we have $Pr() = \frac{1}{2}$
Q: Wheat & is $Pr() \Rightarrow ?$ (i.e., case when many nodes)

Pr (any nocle is successful) =
$$N = N = (1 - \frac{1}{N})^{N-1}$$

Example: with $N = 2$, we have $Pr() = \frac{1}{2}$
Q: What & Is $Pr() \Rightarrow ?$ (i.e., case when many nocls)

Pure (unslotted) ALOHA

- unslotted Aloha: simpler, no synchronization
- when frame first arrives
 - transmit immediately
- collision probability increases:
 - frame sent at t_0 collides with other frames sent in $[t_0-1,t_0+1]$

Pure Aloha efficiency

P(success by given node) = P(node transmits) \cdot P(no other node transmits in $[t_0-1,t_0]$ \cdot P(no other node transmits in $[t_0,t_0+1]$ = $p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1}$ = $p \cdot (1-p)^{2(N-1)}$

... choosing optimum $p^* = 1/(2N)$ and then letting $N \rightarrow infinity ...$

= 1/(2e) = .18

even worse than slotted Aloha!

Now, let's improve things ...

IEEE 802.11: multiple access

- □ avoid collisions: 2+ nodes transmitting at same time
- □ 802.11: CSMA sense before transmitting
 - o don't collide with ongoing transmission by other node
- 802.11: no collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - o can't sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/C(ollision)A(voidance)

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

1 if sense channel idle for **DIFS** then transmit *entire* frame (no collision detection)

2 if sense channel busy then

start random backoff time timer counts down while channel idle transmit when timer expires

3. if no ACK, increase random backoff interval, repeat 2 (see later slides)

802.11 receiver

if frame received OK return ACK after SIFS (ACK needed due to hidden terminal problem)

CSMA/CA: collisions happen

CSMA/CA: randomization after collision

- Make use of CSMA (carrier sense multiple access)
- Use set of delays generic called Interframe Space (IFS)

- 1. Station sense the medium
- 2. If medium idle, wait IFS, then if still idle transmit frame
- 3. If medium busy or become busy, defer and monitor the medium until idle
- 4. Then, delay IFS and sense medium
- 5. If medium idle, exponential backoff and if then idle, station transmit
- Binary exponential backoff
- -> handle heavy load

- Make use of CSMA (carrier sense multiple access)
- Use set of delays generic called Interframe Space (IFS)

- 1. Station sense the medium
- 2. If medium idle, wait IFS, then if still idle transmit frame
- 3. If medium busy or become busy, defer and monitor the medium until idle
- 4. Then, delay IFS and sense medium
- 5. If medium idle, exponential backoff and if then idle, station transmit
- Binary exponential backoff
- -> handle heavy load

- Make use of CSMA (carrier sense multiple access)
- Use set of delays generic called Interframe Space (IFS)

- 1. Station sense the medium
- 2. If medium idle, wait IFS, then if still idle transmit frame
- 3. If medium busy or become busy, defer and monitor the medium until idle
- 4. Then, delay IFS and sense medium
- 5. If medium idle, exponential backoff and if then idle, station transmit
- Binary exponential backoff
- -> handle heavy load

- Make use of CSMA (carrier sense multiple access)
- Use set of delays generic called Interframe Space (IFS)

- 1. Station sense the medium
- 2. If medium idle, wait IFS, then if still idle transmit frame
- 3. If medium busy or become busy, defer and monitor the medium until idle
- 4. Then, delay IFS and sense medium
- 5. If medium idle, exponential backoff and if then idle, station transmit
- Binary exponential backoff
- -> handle heavy load

- Make use of CSMA (carrier sense multiple access)
- Use set of delays generic called Interframe Space (IFS)

- 1. Station sense the medium
- 2. If medium idle, wait IFS, then if still idle transmit frame
- 3. If medium busy or become busy, defer and monitor the medium until idle
- 4. Then, delay IFS and sense medium
- 5. If medium idle, exponential backoff and if then idle, station transmit
- Binary exponential backoff
- -> handle heavy load

- Make use of CSMA (carrier sense multiple access)
- Use set of delays generic called Interframe Space (IFS)

- 1. Station sense the medium
- 2. If medium idle, wait IFS, then if still idle transmit frame
- 3. If medium busy or become busy, defer and monitor the medium until idle
- 4. Then, delay IFS and sense medium
- 5. If medium idle, exponential backoff and if then idle, station transmit
- Binary exponential backoff
- -> handle heavy load

Fig. 4. Markov Chain model for the backoff window size.

G. Bianchi, Performance analysis of the IEEE 802.11 distributed coordination function, JSAC 2000

IEEE 802.11 MAC protocol: parameters

Table 2.1. IEEE 802.11 parameters

Parameter	802.11	802.11	802.11	802.11b	802.11a
	(FHSS)	(DSSS)	(IR)		(1) K
t_{slot}	$50~\mu\mathrm{sec}$	$20~\mu\mathrm{sec}$	$8 \mu \text{sec}$	$20~\mu{ m sec}$	$9 \mu sec$
SIFS	$28~\mu\mathrm{sec}$	$10~\mu\mathrm{sec}$	$10~\mu\mathrm{sec}$	$10~\mu{ m sec}$	$16 \mu sec$
PIFS	$\mathrm{SIFS}\ +t_{slot}$				
DIFS	$ ext{SIFS}+(2 imes t_{slot})$				
Operating	$2.4~\mathrm{GHz}$	2.4 GHz	850-950 nm	$2.4~\mathrm{GHz}$	5 GHz
Frequency	×	4			4
Maximum	2 Mbps	2 Mbps	2 Mbps	11 Mbps	54 Mbps
Data Rate			, ,		
CWmin	15	31	63	31	15
CWmax	1,023	1,023	1,023	1,023	1,023

IEEE 802.11 MAC: DCF, cont'd

Priority-based scheme - use 3 values for IFS:

- SIFS (short IFS): shortest IFS used for immediate responses such as ACK, CTS, poll response
- PIFS (point coordination function IFS): middle length IFS used for issuing polls by a centralized controller
- DIFS (distributed coordination function IFS): longest IFS used for regular asynchronous frames

IEEE 802.11 MAC: DCF, cont'd

Priority-based scheme - use 3 values for IFS:

- SIFS (short IFS): shortest IFS used for immediate responses such as ACK, CTS, poll response
- PIFS (point coordination function IFS): middle length IFS used for issuing polls by a centralized controller
- DIFS (distributed coordination function IFS): longest IFS used for regular asynchronous frames

IEEE 802.11 MAC: DCF, cont'd

Priority-based scheme - use 3 values for IFS:

- SIFS (short IFS): shortest IFS used for immediate responses such as ACK, CTS, poll response
- PIFS (point coordination function IFS): middle length IFS used for issuing polls by a centralized controller
- DIFS (distributed coordination function IFS): longest IFS used for regular asynchronous frames

CSMA/CA: addressing the "hidden terminals" problem

Path loss causes "hidden terminals"

- B, A hear each other
- B, C hear each other
- A, C can not hear each other interfering at B

Objects cause "hidden terminals"

- B, A hear each other
- B, C hear each other
- A, C can not hear each other means A,
 C unaware of their interference at B

Avoiding collisions: using RTS/CTS

idea: sender "reserves" channel use for data frames using small reservation packets

- sender first transmits small request-to-send (RTS) packet to BS using CSMA
 - RTSs may still collide with each other (but they're short)
 - contains duration for following data transmission
- BS broadcasts clear-to-send (CTS) packet in response to RTS
 - contains duration for following data transmission
- RTS and/or CTS heard by all nodes
 - All nodes except transmitter defer transmissions
 - transmits data frame

Collision Avoidance: RTS-CTS exchange

Hidden Terminal Problem [2]

Problems with RTS-CTS solution:

- possible collisions between CTS and RTS
- collisions between data packets due to multiple different CTS granted to different neighboring nodes
- Also, adds delay and overhead ...
 - Only beneficial used for very large packets
 - Typically, not used in practice (unless very large packets)...

802.11 frame: addressing

Address 2: MAC address of wireless host or AP transmitting this frame

802.11 frame: more

More slides ...

Exposed Terminal Problems

Exposed terminal problem (ad-hoc and WLAN)

- medium free near the receiver
- medium busy near the transmitter
 - => Waist of bandwidth

Possible solutions:

- directional antennas
- separate channels for control and data

B wants to send to C but mistakenly thinks the transmission will fail

Issues, medium access schemes

- Distributed operation
- Synchronization
- Hidden terminals
- Exposed terminals
- □ Throughput
- □ Access delay
- □ Fairness
- Real-time traffic support

- □ Resource reservation
- Ability to measure resource availability
- Capability for power control
- Adaptive rate control
- Use of directional antennas

Issues, medium access schemes

- Distributed operation
- Synchronization
- Hidden terminals
- Exposed terminals
- □ Throughput
- □ Access delay
- □ Fairness
- □ Real-time traffic support

- □ Resource reservation
- ☐ Ability to measure resource availability
- □ Capability for power control
- □ Adaptive rate control
- Use of directional antennas

Issues, medium access schemes

- Distributed operation
- □ Synchronization
- ☐ Hidden terminals
- □ Exposed terminals
- □ Throughput
- □ Access delay
- □ Fairness
- Real-time traffic support

- □ Resource reservation
- Ability to measure resource availability
- Capability for power control
- Adaptive rate control
- Use of directional antennas

A few more words about QoS

IEEE 802.11 MAC: Point Coordination Function (PCF)

- Alternative access method on top of DCF
- Polling operation by a centralized master
- Use PIFS when issuing polls
- To avoid locking out the asynchronous traffic the superframe is used

<u>IEEE 802.11e: Enhanced Distribution</u> <u>Coordination Function (EDCF)</u>

Figure 10.5. An example of EDCF access mechanism.