Concurrent programming
and Operating Systems

Lesson 3

Dag Jonsson

II LINKOPING
o UNIVERSITY

1 Lab5b
wait
Input validation
Testing

II LINKOPING
o UNIVERSITY

TDDE47/TDDE68 Dag Jénsson 2024-02-22

Overview

¢ Implement syscall wait - handle different scenarios

¢ Implement input validation - check to make sure
that we get valid input from the user program

LINKOPING
Il.u UNIVERSITY

TDDE47/TDDE68 Dag Jénsson 2024-02-22

Lab 4: Refresher

II LINKOPING
o UNIVERSITY

TDDE47/TDDE68 Dag Jénsson 2024-02-22

wait

® int wait(pid_t pid) - sleep the parent until child
finishes and return the child’s exit status.

® Define a new structure for the shared memory

struct parent child {
int exit_ status;
int alive count;
/* Whatever else
you need pcs

| Parent | | Child |

b

LINKOPING
Il.u UNIVERSITY

TDDE47/TDDE68 Dag Jénsson 2024-02-22

wait

® Scenarios:

Parent calls wait before the child terminates
Parent calls wait after the child terminates
Parent terminates before the child, without wait
Parent terminates after the child without wait

® In each of these scenarios, your code must work
and shared resources need to be freed when it’s not
needed anymore

® Remember that a process can have several children,
but only one parent!

LINKOPING
Il.u UNIVERSITY

TDDE47/TDDE68 Dag Jénsson 2024-02-22

wait

® wait can only be called once per child.
e [f anything goes wrong, -1 is expected as the return.
® Busy waiting is NOT allowed.

e Hint: Since the exit status has to be available even
after the child terminates, store in dynamically
allocated memory.

LINKOPING
Il.u UNIVERSITY

TDDE47/TDDE68 Dag Jénsson 2024-02-22

wait scenario 1

parent waits for child to exit

exit(X)
Child
Free the pcs
I N
Parent exec walt return X

LINKOPING
Il.u UNIVERSITY

TDDE47/TDDE68

Dag Jénsson 2024-02-22

wait scenario 2

child exists before the parent, and then the parent waits

Child

%—..............................é
Free the pcs

Parent

exec wait(Child) return X

LINKOPING
Il.u UNIVERSITY

TDDE47/TDDE68 Dag Jénsson 2024-02-22

wait scenario 3

parent never waits for the child and exits
exit(X)

Child

Free the pes

Parent ~ovec exit(Y)

LINKOPING
Il.u UNIVERSITY

TDDE47/TDDE68 Dag Jénsson 2024-02-22

Input validation

® Argument paranoia: nothing the user processes
does should crash Pintos

e Example: read (STDIN_FILENO, 0xc0000000,
512);

o All pointers from the user processes to the kernel
must be validated!

e [f a pointer is not valid, the caller should be
terminated with exit status -1

10

LINKOPING
UNIVERSITY

TDDE47/TDDE68 Dag Jénsson 2024-02-22

Input validation

® A valid pointer from a user process comply with
the following:

e Below PHYS_SPACE in virtual memory (not in
kernel memory)
e Associated with a page in the page table for the
calling process (pagedir_get_page())
® pagedir_get_page() is an expensive operation, so
it’s not effecient to call it for every address. It’s
possible to only use it once per page a given buffer
spans. (Why? How?)

11

LINKOPING
Il.u UNIVERSITY

TDDE47/TDDE68 Dag Jénsson 2024-02-22

Input validation

® Suppose a process calls
create((char *) PHYS_BASE - 12345, 17);

® filesys_create() does not validate the string,
and the string is not null. This will likely crash
Pintos.

® Hint: You must check that the char * is a valid
C-string by iterating over every character, and
check that the pointer is valid. A valid C-string is
null terminated (>\0?)

12

LINKOPING
UNIVERSITY

TDDE47/TDDE68 Dag Jénsson 2024-02-22

Input validation

® Suppose a user process calls
write(1l, malloc(1), 1000);

e Hint: We must check that every possible pointer is
valid. In this case that would mean checking 1000
pointers (at most; you can optimise this by
computing the page boundaries, and check those).

e Hint: In contrast to strings, the size is given and we
do not have to search for *\0’

13

LINKOPING
Il.u UNIVERSITY

TDDE47/TDDE68 Dag Jénsson 2024-02-22
Input validation

® The user process can modify its own stack pointer:
asm volatile("movl $0x0, Yesp; int $0x30"
REDH

e That means that you need to validate the stack
pointer as well. If you increment the stack pointer,
you need to redo that check!

® In other words, you need to validate the stack
pointer for every argument you extract.

® Note that to check the memory for an integer you
need to treat it as a 4 byte array (Why?)

14

LINKOPING
Il.u UNIVERSITY

TDDE47/TDDE68 Dag Jénsson 2024-02-22 15

Testing

® once you have implemented a solution for lab 5,
you can run tests with make -j check from the
userprog/ folder

® the tests will test your solutions for labs 1, 2, 4,
and 5. it’s fairly common to have to fix something
in older labs

¢ if you want to run a single test, you can do the
following from userprog/:
make build/tests/userprog/halt.result

LINKOPING
Il.u UNIVERSITY

TDDE47/TDDE68 Dag Jénsson 2024-02-22 16

Testing

® tests/userprog/halt.c - The actual test program

® userprog/build/tests/userprog/halt.result -
Result only

® userprog/build/tests/userprog/halt.errors -
Errors, faulty output

® userprog/build/tests/userprog/halt.output -
Complete printout of the program run

LINKOPING
Il.u UNIVERSITY

2 Lab 6

File system
Hints

II LINKOPING
o UNIVERSITY

TDDE47/TDDE68 Dag Jénsson

Overview

® Synchronise the file system in Pintos
® Reader-writers problem

® Testing your implementation

2024-02-22

18

LINKOPING
Il.u UNIVERSITY

TDDE47/TDDE68 Dag Jénsson 2024-02-22

File system

® You need to implement synchronisation for
accessing data in files when they are shared
between multiple processes that are not already
synchronised

® Use locks and/or semaphores!

® You could synchronise the filesystem by using one
lock for everything, this however will lead to
unacceptable performance

19

LINKOPING
Il.u UNIVERSITY

TDDE47/TDDE68 Dag Jénsson 2024-02-22 20
File system

® threads/malloc. [h|c] - Heap memory allocation
(shared, already synchronised)

® devices/block. [hlc] - Low-level operations on
the drive (shared, already synchronised)

e filesys/free-map. [hlc] - Operations on the map
of free disk sectors (shared)

® filesys/inode. [h|c] - Operations on inodes,
which represents an individual file. When you
write/read data to/from an inode you modify the
actual physical file (shared)

LINKOPING
Il.u UNIVERSITY

TDDE47/TDDE68 Dag Jénsson 2024-02-22 21

File system

e filesys/file. [hlc] - A file object contains an
inode and things like seek position. Every process
has its own object (not shared)

e filesys/directory. [h|c] - Operations on
directories (parially shared)
e filesys/filesys. [hlc] - Operations on the file

system, such as create, open, close, remove and so

on (shared)

LINKOPING
Il.u UNIVERSITY

TDDE47/TDDE68 Dag Jénsson 2024-02-22

Readers-writers

Some requirements:

® Several readers are able to read from the same file
at the same time

® Only one writer can write to a specific file at the
same time

® Several writers are able to write to different files at
the same time

® When a process is reading a file, no other process
can write to that file

® When a process is writing to a file, no other process
can read from that file

22

LINKOPING
UNIVERSITY

TDDE47/TDDE68 Dag Jénsson 2024-02-22

Readers-writers

® Reader-writers algorithms can achieve the
aforementioned requirements.

e Hint: Implementing a readers-preference is fairly
easy, but might lead to starving writers

e Hint: There is at most 1 inode per physical file

23

LINKOPING
Il.u UNIVERSITY

TDDE47/TDDE68 Dag Jénsson 2024-02-22

Research lab example

¢ Imagine a research lab, where either research or
drop-in visits may happen
® Only one of the activites can be active at a time

® Qutside of the lab there are a sign that indicates if
the room is occupied or not, and a counter of the
number of visitors in the room

® Design a simple protocol to enter the room based
on the signs. It should be visible at a glance if the
room is available for either activity

24

LINKOPING
UNIVERSITY

TDDE47/TDDE68 Dag Jénsson 2024-02-22

Hints

® Some questions you can agk yourself to help you
understand what needs to be done. What can
happen, in the worst case, if two processes try to...

Create and remove the same file at the same time?
Read and write the same file at the same time?
Open the same file at the same time?

Open and close the same file at the same time?
And so on!

® "at the same time" should interpreted as the first
operation is interrupted by the second

25

LINKOPING
Il.u UNIVERSITY

Dag Jonsson

II LINKOPING
o UNIVERSITY

mailto:dag.jonsson@liu.se
www.liu.se

	Lab 5
	wait
	Input validation
	Testing

	Lab 6
	File system
	Hints

