Concurrent programming
and Operating Systems
Lesson 3

Dag Jonsson

LINKOPING
II." UNIVERSITY

Lab 5

LINKOPING
II." UNIVERSITY

Overview

* Implement process waiting
* Make it available as a syscall
* The kernel will also need to use the implementation (see threads/init.c)

* Implement pointer validation

* Need to validate any pointer that the user gives

« Validate your solution

* Test suite containing 62 tests

What is ‘'wait’?

* A way for a parent process to wait for a child to finish execution
* The child’s exit status is the return

* Note that the kernel is waiting on the first process

wait

* Scenarios
* Parent calls wait before the child terminates
» Parent calls wait after the child terminates
e Parent terminates before the child, without wait

e Parent terminates after the child, without wait
* Your solution need to be able to handle all of the above

* Shared resources should be freed as soon as they are not needed anymore

wait

A process can have several child processes, but only one parent

walt can only be called once per child

If anything goes wrong, -1 is expected as return

* Busy waiting is obviously not allowed

Scenario 1

 Parent waits for child to exit

Child > exit (x)

| " Freethe
| /. resource -

Parent exec » wait » return X Lo »

Scenario 2

 Parent waits after the child terminates

Child - exit (x)
| " Freethe
s \\\\resource////
wait,
Parent exec > immediate - »

return X

Scenario 3

 Parent never waits

Child > exit ()
| ~ Freethe
,,,,,,,,,,,, J ‘_\resource//”

Parent exec > exit(y)

Wait resource

* So what is the resource?

* A shared struct, holding all the necessary data to facility wait

« Think of the resource as the relation between the processes

* Consider that a process can have several children, but only one parent

 Note: Do not make the thread structs the shared structure. Consider their
lifetimes

Lab 4: Refresher

 When should you create the relation? 3

Pointer validation

« A valid pointer has the following properties
-~ Below PHYS BASE

— Associated with a page in the current process’ page table

 pagedir get page() can be used to verify the last point

— This function is very expensive however. To pass later tests you will need to use it in a
smart way

- Consider what you know about the page once you've verified one address in it

Pointer validation

* Suppose a program makes the following syscall:
 create((char *) PHYS BASE - 12345, 17);

« filesys create() does not validate the string, and it’s not NULL. Will likely crash
Pintos (the kernel)

» The answer then is to validate the C-string before passing it along
 Remember that a C-string is terminated with a ‘\0’ character

 Ifit’s not valid, just terminate the calling thread

Pointer validation

* Suppose a program makes the following syscall:
- write(1l, malloc(l), 1000);
* Need to validate at most 1000 addresses.
* Can be optimized, think about how the pages work

* The answer then is to validate any given buffer before passing it along
 In contrast to strings, we are given the length and do not have to search for ‘\0’

 Ifit’s not valid, just terminate the calling thread

Pointer validation

* Even the stack pointer needs to be validated!
« asm volatile(”"movl $0x0, %esp; int $0x30" :::);

« Hint: It might be easier to treat the esp as a buffer, and validate as much as
you need.

 Remember that an int and pointers take up 4 bytes.

Test suite

 tests/userprog/halt.c — The actual test
e userprog/build/tests/userprog/halt.result — Result only

 userprog/build/tests/userprog/halt.errors — Errors, faulty
output

 userprog/build/tests/userprog/halt.output — Complete
printout of the test run. Possibly most useful

Lab 6

LINKOPING
II." UNIVERSITY

Overview

* Synchronise the file system in Pintos
* Reader-writers problem

 Even more tests!

File system

 thread/malloc.[h]|c] — Heap memory allocation (shared, already
synchronised)

 devices/block. [h]|c] — Low-level operations on the hard drive
(shared, already synchronised)

« filesys/free-map.[h|c] — Operations on the map of free disk sectors
(shared)

« filesys/inode. [h]|c] — Operations on inodes, which represent an

actual file on disk. Operations on the inode actually change the content on
disk! (shared)

File system

« filesys/file.[h]|c] — Afile object, keeping track of where in the
inode to read and write (not shared)

« filesys/directory.[h|c] — Operations on directories (partially
shared)

« filesys/filesys. [h]|c] — High level operations on the file system
(shared)

Reader-writer problem

* Some requirements:
* Several readers should be able to read from the same file at the same time
* Only one writer can write to a specific file at the same time

* Several writers are able to write to different files at the same time

While a file is being read, there should be no write operation made

While a file is being written, no other process can read from/write to that file at the same
time

Reader-writer problem

« Reader-writer algotihms can achieve the priviously mentioned
requirements

* Important that you know what kind of solution you make, and have some
motiviation why potential starving isn’t a problem

« Hint: There is at most 1 inode per physical file

Final hints

* To help you understand the problem, consider the following questions. Try
to imagine what could happen in the worst case if two or more processed
tried to:

Create and remove the same file at the same time?

Read and write the same file at the same time?

Open the same file at the same time?

Open and close the same file at the same time?
* And so on!

* ”At the same time” should be interpreted as the first operation is prempted
by the second

Dag Jonsson
dag.jonsson@liu.se

LINKOPING
II.“ UNIVERSITY

	Presentation template with LiU typography
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

