
Concurrent programming
and Operating Systems
Lesson 3
Dag Jönsson

Lab 5

Overview

● Implement process waiting
● Make it available as a syscall
● The kernel will also need to use the implementation (see threads/init.c)

● Implement pointer validation
● Need to validate any pointer that the user gives

● Validate your solution
● Test suite containing 62 tests

What is ’wait’?

● A way for a parent process to wait for a child to finish execution

● The child’s exit status is the return

● Note that the kernel is waiting on the first process

wait

● Scenarios
● Parent calls wait before the child terminates

● Parent calls wait after the child terminates

● Parent terminates before the child, without wait

● Parent terminates after the child, without wait

● Your solution need to be able to handle all of the above

● Shared resources should be freed as soon as they are not needed anymore

●

wait

● A process can have several child processes, but only one parent

● wait can only be called once per child

● If anything goes wrong, -1 is expected as return

● Busy waiting is obviously not allowed

Scenario 1

● Parent waits for child to exit

Parent

Child exit (x)

exec wait return x

Free the
resource

Scenario 2

● Parent waits after the child terminates

Parent

Child exit (x)

exec
wait,

immediate
return x

Free the
resource

Scenario 3

● Parent never waits

Parent

Child exit (x)

exec exit (y)

Free the
resource

Wait resource

● So what is the resource?

● A shared struct, holding all the necessary data to facility wait

● Think of the resource as the relation between the processes

● Consider that a process can have several children, but only one parent

● Note: Do not make the thread structs the shared structure. Consider their
lifetimes

Lab 4: Refresher

● When should you create the relation?

Pointer validation

● A valid pointer has the following properties
– Below PHYS_BASE
– Associated with a page in the current process’ page table

● pagedir_get_page() can be used to verify the last point
– This function is very expensive however. To pass later tests you will need to use it in a

smart way

– Consider what you know about the page once you’ve verified one address in it

Pointer validation

● Suppose a program makes the following syscall:
● create((char *) PHYS_BASE – 12345, 17);
● filesys_create() does not validate the string, and it’s not NULL. Will likely crash

Pintos (the kernel)

● The answer then is to validate the C-string before passing it along
● Remember that a C-string is terminated with a ‘\0’ character
● If it’s not valid, just terminate the calling thread

Pointer validation

● Suppose a program makes the following syscall:
● write(1, malloc(1), 1000);
● Need to validate at most 1000 addresses.

● Can be optimized, think about how the pages work

● The answer then is to validate any given buffer before passing it along
● In contrast to strings, we are given the length and do not have to search for ‘\0’
● If it’s not valid, just terminate the calling thread

Pointer validation

● Even the stack pointer needs to be validated!

● asm volatile(”movl $0x0, %esp; int $0x30” :::);
● Hint: It might be easier to treat the esp as a buffer, and validate as much as

you need.
● Remember that an int and pointers take up 4 bytes.

Test suite

● tests/userprog/halt.c – The actual test

● userprog/build/tests/userprog/halt.result – Result only

● userprog/build/tests/userprog/halt.errors – Errors, faulty
output

● userprog/build/tests/userprog/halt.output – Complete
printout of the test run. Possibly most useful

Lab 6

Overview

● Synchronise the file system in Pintos

● Reader-writers problem

● Even more tests!

File system

● thread/malloc.[h|c] – Heap memory allocation (shared, already
synchronised)

● devices/block.[h|c] – Low-level operations on the hard drive
(shared, already synchronised)

● filesys/free-map.[h|c] – Operations on the map of free disk sectors
(shared)

● filesys/inode.[h|c] – Operations on inodes, which represent an
actual file on disk. Operations on the inode actually change the content on
disk! (shared)

File system

● filesys/file.[h|c] – A file object, keeping track of where in the
inode to read and write (not shared)

● filesys/directory.[h|c] – Operations on directories (partially
shared)

● filesys/filesys.[h|c] – High level operations on the file system
(shared)

Reader-writer problem

● Some requirements:
● Several readers should be able to read from the same file at the same time

● Only one writer can write to a specific file at the same time

● Several writers are able to write to different files at the same time

● While a file is being read, there should be no write operation made

● While a file is being written, no other process can read from/write to that file at the same
time

Reader-writer problem

● Reader-writer algotihms can achieve the priviously mentioned
requirements

● Important that you know what kind of solution you make, and have some
motiviation why potential starving isn’t a problem

● Hint: There is at most 1 inode per physical file

Final hints

● To help you understand the problem, consider the following questions. Try
to imagine what could happen in the worst case if two or more processed
tried to:

● Create and remove the same file at the same time?

● Read and write the same file at the same time?

● Open the same file at the same time?

● Open and close the same file at the same time?

● And so on!

● ”At the same time” should be interpreted as the first operation is prempted
by the second

Dag Jönsson
dag.jonsson@liu.se

	Presentation template with LiU typography
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

