
Concurrent programming
and Operating Systems
Lesson 2
Dag Jönsson

General data structures

Doubly linked list

● lib/kernel/list.[h|c]

● Well documented, study the source files for example usage

● Can store any kind of data

● Do not reuse the list elem between different lists

● Sortable, through the use of
typedef bool list_less_func(const struct list_elem
*a, const struct list_elem *b, void *aux);

Synchronisation

Synchronisation

● What is it and why do we need it?

● Consider the simple expression: ++i
● Once compiled, will do the following:

1) Fetch i from memory and store it in a register;

2) Increment the value in the register by 1;

3) Write the register value back into memory;

4) Return the value stored in the register;

● One expression is in reality several instructions!

Synchronisation

What can happen if two processes, p1 and p2, executes ++i at the ”same
time”?

1) Fetch i from memory to a register

2) Increment the register by 1

3) Write the register value back into memory

4) Return the value stored in the register

The result will be that i increased by 1, not 2.

p1 p2

p1p1

p2

p2

p2

p2

p1

p1

Critical section

● A sequence of instructions, operating on shared resources that need to be
executed by a given number of processes without interference. Also called
mutal exclusion

● Care has to be taken when working with shared resources

● Examples: lists, arrays, network connections, shared variables (memory),
files and so on

Synchronisation primivites

● Solution already exists! Pintos have implementations for the following:
– Locks

– Semaphores

– Conditions (also known as monitors)

● Declared & defined in threads/synch.[h|c]

● See also Pintos Doc Appendix A.3

Locks

● Operations: acquire_lock() and release_lock()

● To release the lock, a thread need to hold it first

● Used to ensure mutual exclusion

● Note: Do not keep the lock longer then necessary

Lock example

● Simple lock solution for our
earlier example

● Instead of directly calling i++,
wrap it in a helper function

 1 // Initialization somewhere
 2 int i = 0;
 3 struct lock lock;
 4 init_lock(&lock);
 5
 6 int inc() {
 7 lock_acquire(&lock);
 8 int ret = i++;
 9 lock_release(&lock);
10 return ret;
11 }

Semaphore

● Operations: sema_down() and sema_up()

● Unlike the lock, any thread can call sema_up()

● Works by trying to decrement an internal counter. If the result is >0, will
wait until the counter is >0.

● The counter is configured at initialization

Semaphore example

● Imagine we have a thread calling the
send() function, adding a new message,
call it S.

● And we also have a second thread calling
recv(), call it R.

 1 struct list msgs;
 2 struct semaphore sema;
 3 init_sema(&sema, 0);
 4
 5 void send(struct msg *msg) {
 6 append(&msgs, msg);
 7 sema_up(&sema);
 8 }
 9
10 void recv() {
11 sema_down(&sema);
12 struct msg *msg = list_pop(&msgs);
13 handle_msg(msg);
14 }

Interrupts

● Internal: Caused by CPU instructions, e.g., system calls

● External: Caused by hardware outside the CPU, e.g., timers, keyboards,
disks.
– intr_disable() causes external interrupts to be postponed

– Returns the previous state, which should be used when restoring

● See also Pintos Doc Appendix A.4

● Try to use synch primitives in the first hand, but sometimes it might be
required to call intr_disable()

Scheduler

● Handles thread scheduling

● Threads can be preempted so that the scheduling can occur

● Preemption is based on timer interrupts

● In Pintos, the scheduler preempts a thread after 4 timer ticks.

● There are 100 ticks per second

Synchronisation II

● The primitives are implemented by disabling interrupts

● During that time, external interrupts are ignored, so no preemption can
occur

● Crude, but effective

Synchronisation II

Keep the following in mind

● External interrupts are disabled only during the lock_acquire() or
sema_down() call
– Your thread may be preempted while executing its critical section!

– However, the synch primitives will protect the critical section, if used correctly

● You can not use synch primitives in external interrupt handlers

● Hint: Disable interrupts rather than using locks when the interrupt
handler is the problem

Lab 3

Lab 3: Files and functions

● devices/timer.[h|c]

● void timer_init()

● void timer_sleep(int64_t ticks)

● void timer_interrupt()

Lab 3: Hints & Testing

● The scheduler will only schedule threads that have the status = READY

● You can control this status with the thread_block() and
thread_unblock() functions

● When done: run make -j check in threads/

● The tests will pass as is, but the task is to remove the busy-wait in
timer_sleep()

Lab 4

Lab 4: Overview

● Implement one more syscall: pid_t exec(const *cmd_line)

● Spawn a new process based on the given cmd_line

● Current implementation does not wait to check if the new process spawned
correctly or not

● The ”parent” need to allow the start_process() function to finish
before continuing

Lab 4: exec flow

Lab 4: Code of interest

● Closer study of the following functions are neccessary

tid_t process_execute(const char *cmd_line) {
 ...
 tid = thread_create(cmd_line, PRI_DEFAULT, start_process, cl_copy);
 …
}

tid_t thread_create(const char* name, int priority, thread_func *function, void *aux);

static void start_process(void *cmd_line_);

Lab 4: Hints

● start_process() is only ”called” in one place, process_execute().
Because of this, you can change what the void *cmd_line is actually
pointing to.

● Assume that PID and TID are the same

● Don’t keep track of the relationship between the ”parent” and ”child” yet

Dag Jönsson
dag.jonsson@liu.se

	Presentation template with LiU typography
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

