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General data structures



Doubly linked list

● lib/kernel/list.[h|c]

● Well documented, study the source files for example usage

● Can store any kind of data

● Do not reuse the list elem between different lists

● Sortable, through the use of 
typedef bool list_less_func(const struct list_elem 
*a, const struct list_elem *b, void *aux);



Synchronisation



Synchronisation

● What is it and why do we need it?

● Consider the simple expression: ++i
● Once compiled, will do the following:

1) Fetch i from memory and store it in a register;

2) Increment the value in the register by 1;

3) Write the register value back into memory;

4) Return the value stored in the register;

● One expression is in reality several instructions!



Synchronisation

What can happen if two processes, p1 and p2, executes ++i at the ”same 
time”?

1) Fetch i from memory to a register

2) Increment the register by 1

3) Write the register value back into memory

4) Return the value stored in the register

The result will be that i increased by 1, not 2.
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Critical section

● A sequence of instructions, operating on shared resources that need to be 
executed by a given number of processes without interference. Also called 
mutal exclusion

● Care has to be taken when working with shared resources

● Examples: lists, arrays, network connections, shared variables (memory), 
files and so on



Synchronisation primivites

● Solution already exists! Pintos have implementations for the following:
– Locks

– Semaphores

– Conditions (also known as monitors)

● Declared & defined in threads/synch.[h|c]

● See also Pintos Doc Appendix A.3



Locks

● Operations: acquire_lock() and release_lock()

● To release the lock, a thread need to hold it first

● Used to ensure mutual exclusion

● Note: Do not keep the lock longer then necessary



Lock example

● Simple lock solution for our 
earlier example

● Instead of directly calling i++,
wrap it in a helper function

 1  // Initialization somewhere
 2  int i = 0;
 3  struct lock lock;
 4  init_lock(&lock);
 5   
 6  int inc() {
 7    lock_acquire(&lock);
 8    int ret = i++;
 9    lock_release(&lock); 
10    return ret;
11  }



Semaphore

● Operations: sema_down() and sema_up()

● Unlike the lock, any thread can call sema_up()

● Works by trying to decrement an internal counter. If the result is >0, will 
wait until the counter is >0.

● The counter is configured at initialization 



Semaphore example

● Imagine we have a thread calling the 
send() function, adding a new message, 
call it S.

● And we also have a second thread calling 
recv(), call it R.

 1  struct list msgs;
 2  struct semaphore sema;
 3  init_sema(&sema, 0);
 4  
 5  void send(struct msg *msg) {
 6    append(&msgs, msg);
 7    sema_up(&sema);
 8  }
 9  
10  void recv() {
11    sema_down(&sema);
12    struct msg *msg = list_pop(&msgs);
13    handle_msg(msg);
14  }



Interrupts

● Internal: Caused by CPU instructions, e.g., system calls

● External: Caused by hardware outside the CPU, e.g., timers, keyboards, 
disks.
– intr_disable() causes external interrupts to be postponed

– Returns the previous state, which should be used when restoring

● See also Pintos Doc Appendix A.4

● Try to use synch primitives in the first hand, but sometimes it might be 
required to call intr_disable()



Scheduler

● Handles thread scheduling

● Threads can be preempted so that the scheduling can occur

● Preemption is based on timer interrupts

● In Pintos, the scheduler preempts a thread after 4 timer ticks.

● There are 100 ticks per second



Synchronisation II

● The primitives are implemented by disabling interrupts

● During that time, external interrupts are ignored, so no preemption can 
occur

● Crude, but effective



Synchronisation II

Keep the following in mind

● External interrupts are disabled only during the lock_acquire() or 
sema_down() call
– Your thread may be preempted while executing its critical section!

– However, the synch primitives will protect the critical section, if used correctly

● You can not use synch primitives in external interrupt handlers

● Hint: Disable interrupts rather than using locks when the interrupt 
handler is the problem



Lab 3



Lab 3: Files and functions

● devices/timer.[h|c]

● void timer_init()

● void timer_sleep(int64_t ticks)

● void timer_interrupt()



Lab 3: Hints & Testing

● The scheduler will only schedule threads that have the status = READY

● You can control this status with the thread_block() and 
thread_unblock() functions

● When done: run make -j check in threads/

● The tests will pass as is, but the task is to remove the busy-wait in 
timer_sleep()



Lab 4



Lab 4: Overview

● Implement one more syscall: pid_t exec(const *cmd_line)

● Spawn a new process based on the given cmd_line

● Current implementation does not wait to check if the new process spawned 
correctly or not

● The ”parent” need to allow the start_process() function to finish 
before continuing



Lab 4: exec flow



Lab 4: Code of interest

● Closer study of the following functions are neccessary

tid_t process_execute(const char *cmd_line) {
  ...
  tid = thread_create(cmd_line, PRI_DEFAULT, start_process, cl_copy);
  …
}

tid_t thread_create(const char* name, int priority, thread_func *function, void *aux);

static void start_process(void *cmd_line_);



Lab 4: Hints

● start_process() is only ”called” in one place, process_execute(). 
Because of this, you can change what the void *cmd_line is actually 
pointing to.

● Assume that PID and TID are the same

● Don’t keep track of the relationship between the ”parent” and ”child” yet
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