
Concurrent programming
and Operating Systems
Lesson 1
Dag Jönsson

General lab information

General lab information

● Work in groups of 2
– Discussion groups

● Excemptions to working in group?

● If you aren’t signed up in WebReg, email me

● Demo and hand in

General lab information

● Assessments
– Correct memory management

– No undefined behaviour

– No synchronization errors

● ”Deadlines”
– Soft deadlines (recommended pace) in TimeEdit

● Deadline
– 2025-03-28

General lab tips

● Read before you code
– Including source code

● Write/draw before you code
– How does the data need to flow?

– What needs to be done in what order?

● Keep solutions simple

● Work outside of scheduled lab hours

● Try and answer the prep. questions in labs

Lab overview

Pintos

● Educational OS developed at Stanford University

● C and Assembly, well documented

● 7 500 LOC

● Exists:
– Device drivers, filesystem

– Userspace with small standard library

– Simple scheduler, interrupt support

● Labs: Add functionality

Lab environment

● Linux is required, prefer LiU machines

● VM is available, very out of date

● Own machine?
– Linux? At minimum gcc, make, qemu needed

– WSL?

– Mac OS X?

● Editor?
– Emacs, vim, VSCode

Lab 0

● Single linked list
– Doesn’t have to be perfect

● Trying debugging tool
– Not required to use GDB in the labs, but good option

● Running Pintos and debug with GDB

Lab 1 – Command line

● Single user process

● Setting up stack for main(int argc, char** argv)
– X86 convention

● Remember popping and pushing from/to the stack?

● Solid knowledge about memory layout and pointer arithmetic

● About 30-50 LOC

Lab 2 – Basic System calls

● Single user process

● Handle system calls in kernelspace

● Need to familiarize yourself with the file structure

● About 160-200 LOC

Lab 3 – Basic Synchronization

● Multiple system threads

● Synchronisation is now required

● About 40-60 LOC

Lab 4 – exec

● Multiple user processes

● One more systemcall: exec
– Allow a program to run another program

● About 50-100 LOC

Lab 5 – wait and exit

● Multiple user processes

● One more systemcall! wait
– Let a program wait on a child process

● Validate arguments from userspace
– Make sure the kernel doesn’t crash because of user

● About 50-70 LOC

Lab 6 – File system

● Multiple processes

● Synchronize the filesystem
– Allow several read and write operations to interleave

– Filesystem needs to always be in a valid state

● Usually takes about the same time as Lab 2

● About 40-50 LOC

Total LOC

● Lab 1: 30-50 LOC

● Lab 2: 160-200 LOC

● Lab 3: 40-60 LOC

● Lab 4: 50-100 LOC

● Lab 5: 50-70 LOC

● Lab 6: 40-50 LOC

● Total: 370 – 530 LOC
– Not that much!

Lab 0

Lab 0: Single linked list

● Simple linked list to store dynamically allocated data

Lab 0: GDB

● Small problems
– Practice debugging

– Try a (potentially) new tool

● Not exhaustive, only introductionary

Lab 1

Memory layout

● Split between kernel and userspace

● Addresspace:
– Userspace:]PHYS_BASE, 0], grows → 0

– Kernelspace: [PHYS_BASE, MAX_MEM]

KERNELSPACE

USERSPACE

PHYS_BASE

A
D
D
R
E
S
S

0

The stack

● Every program has its own stack

● Consider the command line ls -la .
– Where are is it stored? By who? Why? How is it used?

● The OS is responsible for setting up the stack

● Rules that need to be followed (x86 convention)

The stack

● Consider the following program:

● Running the program as:
./a.out Hello

● What will the first line print?

● The second? And the last?

int main(int argc, char** argv) {
 printf("%s", argv[0]);
 printf("%s", argv[1]);
 printf("%s", argv[argc]);
}

The stack

● Every time a function is called, a stack frame is
created:

● But we don’t call the main function?

● The argument values and return adress is pushed to the stack, by the OS

The stack

Pintos boot

● Defined in threads/init.c

● Initializes submodules (threads, memory, file system, etc)

● Executes a given userprogram with process_execute(), defined in
userprog/process.c

process_execute(), start_process()

● T0: Tries to create a thread for the new process
– If success: Hands over execution to the new thread, have it start in

start_process()

● T1: will try and allocate resources, load binary and initialize the stack

– If successful: Hand over execution to the userprogram, starting in main()

● Difference between thread and process in Pintos?

thread struct

● Declared in threads/thread.h

● Well documented in the source files

● Keep track of kernel resources allocated for a thread/process

● Used throughout the lab series

Lab 1: Command line

● Currently, Pintos does not setup the stack correctly

● Your task:
– Write code to setup the stack correctly

– Make sure the correct filename is loaded (and set the thread name)

● Initial steps: Familarize yourself with
 userprog/process.c : start_process()

● See Pintos documentation 3.5 80x86 Calling Convention for another explanation

Lab 1: String tokenization

● start_process() will get a C-String, e.g. ”binary -s 17\0”, you need to process
this before pushing it to the stack.

– Helpful functions in lib/string.h
char* strtok_r(char*, const char*, char**)
void* memcpy(void*, const void*, size_t)

● These functions are documented in their implementation: lib/string.c

– You might find other useful functions there as well.

Lab 1: String tokenization

● Where to put our code?
– userprog/process.c : start_process()

– Hint: start_process() creates an interrupt frame which holds a pointer to the
stack. Make sure the stack is initialized before putting anything on it.

● Remember, double pointers need to be dereferenced twice to get at the
actual value. Deref once to change the pointer to the value.

Lab 2

Interrupts and systemcalls

● Two groups of interrupts in Pintos
– External and internal

● Systemcalls - internal interrupt

● Interrupts -> interrupt frame

Interrupt frame

● Declared in threads/interrupt.h

● Snapshot of the CPU registers at interrupt
– Used to restore the CPU registers once the interrupt is served

● Registers of interest to you:
– esp – The stack pointer

– eax – Return register

Lab 2: syscalls

● You only need to think about 1 process

● Suppose a user process want to open a file, it has to:
– Call the function int open(const char* file)

– It will push the arguments to the stack, and add in the correct syscall number

– Cause an interal interrupt and switch execution over to kernel mode, specifially
interrupt handler

– It will look at the interrupt number, and delegate the servicing of the interrupt to the
syscall handler. userprog/syscall.c : syscall_handler()

● All of the above is already implemented and works as expected!

Lab 2: syscalls

● Your task is to implement the syscall_handler() (kernel mode)
– Read the syscall number from the stack (defined in lib/syscall-nr.h)

– Decide on how many arguments to extract from the stack, based on the syscall
number

– Service the syscall, potentially returning a value to the userprog (usermode)

● The handler has to extract the values manually from the stack (f->esp)
– Why?

● Note that some of the arguments are pointers

● Return value? Store it in the f→eax register

Lab 2: File descriptors (FD)

● A process unique non-negative integer that represents abstract
input/output resources

● For example: files, consoles, network sockets, etc

● Userprograms only knows about FDs

● Special FDs:
– 0 – stdin

– 1 - stdout

Lab 2: File handling

● You need to figure out a strategy for FDs

● Remember:
– They need to be unique for the given process

– The FD represent a resource allocated to the process

– Where to store the actual resource? How?

– If a file is opened several times, how many FDs?

Lab 2: Files

● You should read through the following files:
– lib/user/syscall.[h|c] – The syscall wrapper

– lib/syscall-nr.h – Syscall numbers

– threads/interrupt.h – Important structure!

– filesys/filesys.[h|c] – High level functions for the file system

● Modify:
– userprog/syscall.[h|c] – Implement syscall handler

– userprog/process.[h|c] – Clean up any resources on exit here

– threads/thread.[h|c] – Any resources allocated for the thread goes here

Lab 2: Final tips

● Currently, the syscall_handler() kills any calling program
– Remove this to avoid confusion later

● printf() does not work in userprograms until the write syscall is
implemented.
– printf() does work if you are in kernel mode though!

● f→esp is pointing to the stack of the calling process.
– Specifically the top of the stack

● Traversing the stack means you are increasing the memory address.

Lab 2: Final tips

● Most of the actual functionally is already there
– You just need to call it correctly

● Any given process should be able to open 128 files

● Verify any values from userspace
– Is the given FD associated with a resource?

– Is the given buffer size reasonable? (>= 0)

● Don’t validate pointers (yet!)
– You can assume that the pointers themselves are correct for now

FAQ and general tips (again!)

● Use thread_current() to get the current thread struct for the calling
process/thread.

● The function filesys_open() opens a file, while file_close() closes a
file.

● init_thread() is used to initialize a singular thread. thread_init()
initializes the thread module (once, during boot). If you need to initialize
some values in the thread struct, do it in init_thread().

● Structure your code for readability!
– You will very likely revist your solution in later labs.

● Think about your future selves!

– Add more functions if you feel it helps
● But consider if they need to be global or local only

Debugging

● Read Appendix E. Debugging tools in the Pintos documentation

● If you get ”Kernel Panic”, you can try and use the backtrace tool

● Free sets the bytes to 0xcc: If you see these values the memory accessed is
very likely freed

● Commit often!
– Sometimes it easier to revert to a working version instead of solving the issue.

● If you get something like this:

● Then try the backtrace tool:

● You should get:

Call stack: 0xc0106eff 0xc01102fb 0xc010dc22 0xc010cf67
0xc0102319 0xc010325a 0x804812c 0x8048a96 0x8048ac8

backtrace kernel.o 0xc0106eff 0xc01102fb 0xc010dc22 0xc010cf67
0xc0102319 0xc010325a 0x804812c 0x8048a96 0x8048ac8

0xc0106eff: debug_panic (lib/debug.c:86)
0xc01102fb: file_seek (filesys/file.c:405)
0xc010dc22: seek (userprog/syscall.c:744)
0xc010cf67: syscall_handler (userprog/syscall.c:444)
0xc0102319: intr_handler (threads/interrupt.c:334)
0xc010325a: intr_entry (threads/intr-stubs.S:38)

Dag Jönsson
dag.jonsson@liu.se

	Presentation template with LiU typography
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

