
Concurrent programming
and Operating Systems 
Lesson 1
Dag Jönsson



General lab information



General lab information

● Work in groups of 2
– Discussion groups

● Excemptions to working in group?

● If you aren’t signed up in WebReg, email me

● Demo and hand in



General lab information

● Assessments 
– Correct memory management

– No undefined behaviour

– No synchronization errors

● ”Deadlines”
– Soft deadlines (recommended pace) in TimeEdit

● Deadline
– 2025-03-28



General lab tips

● Read before you code
– Including source code

● Write/draw before you code
– How does the data need to flow?

– What needs to be done in what order?

● Keep solutions simple

● Work outside of scheduled lab hours

● Try and answer the prep. questions in labs



Lab overview



Pintos

● Educational OS developed at Stanford University

● C and Assembly, well documented

●  7 500 LOC

● Exists: 
– Device drivers, filesystem

– Userspace with small standard library

– Simple scheduler, interrupt support

● Labs: Add functionality 



Lab environment

● Linux is required, prefer LiU machines

● VM is available, very out of date

● Own machine?
– Linux? At minimum gcc, make, qemu needed 

– WSL? 

– Mac OS X? 

● Editor?
– Emacs, vim, VSCode



Lab 0

● Single linked list
– Doesn’t have to be perfect

● Trying debugging tool
– Not required to use GDB in the labs, but good option

● Running Pintos and debug with GDB



Lab 1 – Command line

● Single user process

● Setting up stack for main(int argc, char** argv)
– X86 convention

● Remember popping and pushing from/to the stack?

● Solid knowledge about memory layout and pointer arithmetic

● About 30-50 LOC



Lab 2 – Basic System calls

● Single user process

● Handle system calls in kernelspace

● Need to familiarize yourself with the file structure

● About 160-200 LOC



Lab 3 – Basic Synchronization

● Multiple system threads

● Synchronisation is now required

● About 40-60 LOC



Lab 4 – exec

● Multiple user processes

● One more systemcall: exec
– Allow a program to run another program

● About 50-100 LOC



Lab 5 – wait and exit

● Multiple user processes

● One more systemcall! wait
– Let a program wait on a child process

● Validate arguments from userspace
– Make sure the kernel doesn’t crash because of user 

● About 50-70 LOC



Lab 6 – File system

● Multiple processes

● Synchronize the filesystem
– Allow several read and write operations to interleave

– Filesystem needs to always be in a valid state

● Usually takes about the same time as Lab 2

● About 40-50 LOC



Total LOC

● Lab 1: 30-50 LOC

● Lab 2: 160-200 LOC

● Lab 3: 40-60 LOC

● Lab 4: 50-100 LOC

● Lab 5: 50-70 LOC

● Lab 6: 40-50 LOC

● Total: 370 – 530 LOC
– Not that much!



Lab 0



Lab 0: Single linked list

● Simple linked list to store dynamically allocated data



Lab 0: GDB

● Small problems
– Practice debugging

– Try a (potentially) new tool

● Not exhaustive, only introductionary



Lab 1



Memory layout

● Split between kernel and userspace

● Addresspace:
– Userspace: ]PHYS_BASE, 0], grows  → 0

– Kernelspace: [PHYS_BASE, MAX_MEM]

KERNELSPACE

USERSPACE

PHYS_BASE

A
D
D
R
E
S
S

0



The stack

● Every program has its own stack

● Consider the command line ls -la .
– Where are is it stored? By who? Why? How is it used?

● The OS is responsible for setting up the stack 

● Rules that need to be followed (x86 convention)



The stack

● Consider the following program:

● Running the program as:
./a.out Hello

● What will the first line print?

● The second? And the last?

int main(int argc, char** argv) {
    printf("%s", argv[0]);
    printf("%s", argv[1]);
    printf("%s", argv[argc]);
}



The stack

● Every time a function is called, a stack frame is 
created:

● But we don’t call the main function?

● The argument values and return adress is pushed to the stack, by the OS



The stack



Pintos boot

● Defined in threads/init.c

● Initializes submodules (threads, memory, file system, etc)

● Executes a given userprogram with process_execute(), defined in 
userprog/process.c



process_execute(), start_process()

● T0: Tries to create a thread for the new process
– If success: Hands over execution to the new thread, have it start in 

start_process()

● T1: will try and allocate resources, load binary and initialize the stack

– If successful: Hand over execution to the userprogram, starting in main()

● Difference between thread and process in Pintos?



thread struct

● Declared in threads/thread.h

● Well documented in the source files

● Keep track of kernel resources allocated for a thread/process

● Used throughout the lab series



Lab 1: Command line

● Currently, Pintos does not setup the stack correctly

● Your task: 
– Write code to setup the stack correctly

– Make sure the correct filename is loaded (and set the thread name)

● Initial steps: Familarize yourself with
 userprog/process.c : start_process()

● See Pintos documentation 3.5 80x86 Calling Convention for another explanation



Lab 1: String tokenization

● start_process() will get a C-String, e.g. ”binary -s 17\0”, you need to process 
this before pushing it to the stack.

– Helpful functions in lib/string.h
char* strtok_r(char*, const char*, char**)
void* memcpy(void*, const void*, size_t)

● These functions are documented in their implementation: lib/string.c

– You might find other useful functions there as well.



Lab 1: String tokenization

● Where to put our code?
– userprog/process.c : start_process()

– Hint: start_process() creates an interrupt frame which holds a pointer to the 
stack. Make sure the stack is initialized before putting anything on it.

● Remember, double pointers need to be dereferenced twice to get at the 
actual value. Deref once to change the pointer to the value.



Lab 2



Interrupts and systemcalls

● Two groups of interrupts in Pintos
– External and internal

● Systemcalls - internal interrupt

● Interrupts -> interrupt frame



Interrupt frame

● Declared in threads/interrupt.h

● Snapshot of the CPU registers at interrupt
– Used to restore the CPU registers once the interrupt is served

● Registers of interest to you:
– esp – The stack pointer

– eax – Return register



Lab 2: syscalls

● You only need to think about 1 process

● Suppose a user process want to open a file, it has to:
– Call the function int open(const char* file)

– It will push the arguments to the stack, and add in the correct syscall number

– Cause an interal interrupt and switch execution over to kernel mode, specifially 
interrupt handler

– It will look at the interrupt number, and delegate the servicing of the interrupt to the 
syscall handler. userprog/syscall.c : syscall_handler()

● All of the above is already implemented and works as expected!





Lab 2: syscalls

● Your task is to implement the syscall_handler() (kernel mode)
– Read the syscall number from the stack (defined in lib/syscall-nr.h)

– Decide on how many arguments to extract from the stack, based on the syscall 
number

– Service the syscall, potentially returning a value to the userprog (usermode)

●  The handler has to extract the values manually from the stack (f->esp)
– Why?

● Note that some of the arguments are pointers

● Return value? Store it in the f→eax register



Lab 2: File descriptors (FD)

● A process unique non-negative integer that represents abstract 
input/output resources

● For example: files, consoles, network sockets, etc

● Userprograms only knows about FDs

● Special FDs:
– 0 – stdin

– 1 - stdout



Lab 2: File handling

● You need to figure out a strategy for FDs

● Remember:
– They need to be unique for the given process

– The FD represent a resource allocated to the process

– Where to store the actual resource? How?

– If a file is opened several times, how many FDs?



Lab 2: Files

● You should read through the following files:
– lib/user/syscall.[h|c] – The syscall wrapper

– lib/syscall-nr.h – Syscall numbers

– threads/interrupt.h – Important structure!

– filesys/filesys.[h|c] – High level functions for the file system

● Modify:
– userprog/syscall.[h|c] – Implement syscall handler

– userprog/process.[h|c] – Clean up any resources on exit here

– threads/thread.[h|c] – Any resources allocated for the thread goes here



Lab 2: Final tips

● Currently, the syscall_handler() kills any calling program
– Remove this to avoid confusion later

● printf() does not work in userprograms until the write syscall is 
implemented.
– printf() does work if you are in kernel mode though!

● f→esp is pointing to the stack of the calling process.
– Specifically the top of the stack

● Traversing the stack means you are increasing the memory address.



Lab 2: Final tips

● Most of the actual functionally is already there
– You just need to call it correctly

● Any given process should be able to open 128 files

● Verify any values from userspace
– Is the given FD associated with a resource?

– Is the given buffer size reasonable? (>= 0)

● Don’t validate pointers (yet!)
– You can assume that the pointers themselves are correct for now



FAQ and general tips (again!)



● Use thread_current() to get the current thread struct for the calling 
process/thread.

● The function filesys_open() opens a file, while file_close() closes a 
file.

● init_thread() is used to initialize a singular thread. thread_init() 
initializes the thread module (once, during boot). If you need to initialize 
some values in the thread struct, do it in init_thread().

● Structure your code for readability!
– You will very likely revist your solution in later labs. 

● Think about your future selves!

– Add more functions if you feel it helps
●  But consider if they need to be global or local only



Debugging



● Read Appendix E. Debugging tools in the Pintos documentation

● If you get ”Kernel Panic”, you can try and use the backtrace tool

● Free sets the bytes to 0xcc: If you see these values the memory accessed is 
very likely freed

● Commit often!
–  Sometimes it easier to revert to a working version instead of solving the issue.



● If you get something like this:

● Then try the backtrace tool:

● You should get:

Call stack: 0xc0106eff 0xc01102fb 0xc010dc22 0xc010cf67
0xc0102319 0xc010325a 0x804812c 0x8048a96 0x8048ac8

backtrace kernel.o 0xc0106eff 0xc01102fb 0xc010dc22 0xc010cf67
0xc0102319 0xc010325a 0x804812c 0x8048a96 0x8048ac8

0xc0106eff: debug_panic (lib/debug.c:86)
0xc01102fb: file_seek (filesys/file.c:405)
0xc010dc22: seek (userprog/syscall.c:744)
0xc010cf67: syscall_handler (userprog/syscall.c:444)
0xc0102319: intr_handler (threads/interrupt.c:334)
0xc010325a: intr_entry (threads/intr-stubs.S:38)



Dag Jönsson
dag.jonsson@liu.se
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