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Reading guidelines

● Silberschatz et al., 
– 9th edition: chapter 7 Deadlocks
– 10th edition: chapter 8 Deadlocks

● Worth checking out:
– https://github.com/angrave/SystemProgramming/

wiki
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Consider interleaving the following

Process A

while true {

  print(A)

  print(K)

}

Process B

while true {

  print(T)

  print(C)

}

  



Program execution
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Correctness properties

● Safety properties
– Something bad will not happen

● Liveness properties
– Something good will happen (eventually)

● More on this way of reasoning in the Software 
Verification course!



Progress

● A form of liveness

● Mathematically defined within a given system model
– Can be defined on system or process level
– Typically ensures that if system is in some state s, then it will reach 

some other state s' where some property P holds.

● Implies freedom from:
– Deadlock
– Livelock
– (Starvation depending on the model)



Deadlock

Deadlock occurs when a group of processes are locked 
in a circular wait (more on this soon).



Livelock

1. Free 
passage

2. Start
driving

3. Passage 
blocked

4. Back
off

Livelock occurs when a group of processes are stuck in 
a loop of actions where they stop each other from 
progressing



● Freedom from deadlock is fundamental to any 
concurrent system

● Necessary but not sufficient for progress!

● Topic for the rest of this lecture

Deadlock-freedom



Earlier

● Mutual exclusion and condition synchronisation 
– Semaphores
– Monitors
– Concurrent data structures

● Worked well for single resource

● What about multiple resources?



Simple deadlock situation

S1

P1

P2

S2

● Two semaphores
– S1 for resource R1
– S2 for resource R2

Process P2:

wait(S1)

wait(S2)

...

signal(S2)

signal(S1)

Process P1:

wait(S2)

wait(S1)

...

signal(S1)

signal(S2)



Coffman conditions

Four necessary conditions for deadlock:

1. Mutual exclusion

   Access to a resource is limited to one (or a limited 
number of) process(es) at a time

2. Hold & wait 

A process may hold a resource and wait for another 
resource at the same time



3. Voluntary release  

Resources can only be released by a process 
voluntarily 

4. Circular wait

There is a chain of processes where  each 
process holds a resource that is required by 
another process 



Resource-Allocation Graph

Process

Resource type 
with 4 instances

Pi requests an

instance of Rj

Pi is holding an

instance of Rj
Pi

Pi

Rj

Rj



Which of these have a dealock?

A B C

Menti code: 46 75 25



Basic Facts
● Graph contains no cycles    no deadlock.

● Graph contains a cycle  
– if only one instance per resource type, then 

deadlock.
– if several instances per resource type, possibility 

of deadlock.



Deadlock elimination 

Four approaches:

● Deadlock prevention
● Deadlock avoidance
● Deadlock detection and treatment
● Ignore the problem



State transition 
(in terms of resources)

Resource is 
acquired or 
released



Program execution with deadlock
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Deadlock prevention
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Deadlock prevention:
Ensure that at least one of the Coffman 

conditions can never occur



Prevent mutual exclusion (ME)
● ME is needed only for limited shared 

resources

● Example: Read-only-file access by arbitrarily 
many readers
– Readers-writer lock



Prevent Hold&Wait
● Whenever a process requests a resource, it 

cannot hold any other resources.

● Request all resources at once
– Dining philosopher solution

● Low resource utilization; starvation possible; 
not flexible.



Ensure preemption
● Force another process to release its resources

● Preempted resources are added to the list of 
resources for which the process is waiting.

● Process will be restarted only when it can regain its 
old resources, as well as the new ones that it is 
requesting.



Prevent circular wait
● Impose a total ordering of all resources

– requests must be performed in this order.

● Priorities of processes and resources 
– e.g., Immediate Ceiling Protocol in Real-time 

scheduling



Tools to eliminate circular wait

● Windows driver verifier

● Linux lockdep tool

● Static analysis tools
– Cbmc for pthreads 

(http://www.cprover.org/deadlock-detection/)
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Deadlock avoidance



Safe state

System is in safe state if there exists a safe 
sequence (i.e., completion sequence) of all 
processes.



Safe states and deadlocks

● If a system is in safe state  no deadlocks.

● If a system is in unsafe state  possibility of deadlock.

● Avoidance:
ensure that a system will 
never enter an unsafe state. 

s

s’

s’’

grant request

??



Assumptions

● Requires a priori knowledge of needed 
resources

● Assume that each process declare the amount 
of resources needed



Deadlock Avoidance Algorithms

Avoidance Algorithms for 2 Cases:

● Case 1:   All resource types have 1 instance only
– Resource Allocation Graph Algorithm

● Case 2:   Multiple instances per resource type
– Banker’s Algorithm



Banker’s algorithm

● Multiple instances of each resource

● Upon each process request
– Check that the request is within the maximum limit 

for that process
– Check that the new state is safe



Rejecting a request

● When allocating a request does not lead to a 
new “safe” state:
– Refuse to grant 

● The request can be repeated in some future 
state and get granted



Inputs and outputs of Banker's

● Input: 
– Matrix Max
– Vector Available
– Matrix Allocation
– Request[i] for some process i (* Request[i] =< Available *)

● Output:
– Yes + new state, or
– No  + unchanged state (Request[i]  can not be allocated now)



Data structures

Available:  Vector of length m. If Available[j] = k, there are k 
instances of resource type Rj  available

Max: n x m matrix.  If Max [i,j] = k, then process i may 
request at most k instances of resource type Rj, Max[i] 
denotes the i'th row.

Allocation:  n x m matrix.  If Allocation[i,j] = k then i is 
currently allocated k instances of Rj, Allocation[i] denotes the 
i'th row.

Need:  n x m matrix. If Need[i,j] = k, then i may need k more 
instances of Rj to complete its task, Need[i] denotes the i'th 
row.

Let n = number of processes, and m = number of resources types. 



 Banker's algorithm

1. Need := Max – Allocation

    Check that Request[i] <= Need[i]

2. Check whether Request[i] <= Available  

     if not, return ”No”

3. Pretend that resources in Request[i] are to be allocated, compute new 
state:

   Allocation’[i] := Allocation[i] + Request[i]

   Need’[i] := Need[i] - Request[i]

   Available’ := Available – Request[i]

4. Test whether the new state is deadlock-avoiding (denoted safe), in which 
case return ”Yes”. 

Otherwise, return ”No” - roll back to the old state. 



Testing for safe state 

● Start with a given Allocation’ and check if it is 
safe (avoids future deadlocks) according to the 
3-step algorithm.



Safety algorithm data structures

Finish: n vector with Boolean values (initially 
false) 

Work : m vector denotes the changing resource 
set as the processes become ready and release 
resources (initially  Work := Available’)



1. Check if there is some process i for which Finish[i] = false and for 
which Need’[i] <= Work. If there is no such process i, go to step 3.

2. Free the resources that i has used to get finished:

Work := Work + Allocation’[i]

Finish[i] := true

continue from step 1.

3. If Finish[i] = true for all i then the initial state is deadlock-avoiding, 
otherwise it is not.

Safety algorithm



Python code



Generated problem



Weaknesses of Banker's algorithm?



Weaknesses of the Banker’s 
Algorithm

● Assumes a fixed number of resources
– not realistic – number of resources can vary over time

● Assumes a fixed population of processes
– not realistic for interactive systems

● Assumes that processes state maximum needs in advance
– often not known 

(depend e.g. on input data or user commands)

● Waiting for completion of one or several processes may take very 
long / unpredictable time before a request is granted



Deadlock Detection and Recovery
● Allow system to enter deadlock state 

● Detection algorithm
– Single instance of each resource type
– Multiple instances

● Recovery scheme



Menti question (46 75 25)
Which of the following statements are true about 
deadlocks?:

A. If there is only a single instance of every resource, a cycle in 
the resource allocation graph means that there is a deadlock.

B. All four Coffman conditions must me met for there to be a 
deadlock.

C. Banker’s algorithm is used to detect and remove deadlocks.

D. Banker’s algorithm guarantees freedom from starvation.



Deadlock detection

...

...

...

...

...

...



Deadlock detection with single instance 
resources



Search for cycle in wait-for graph
● Maintain wait-for graph

– Nodes are processes.
– Pi  Pj  

iff Pi is waiting for Pj.

● Periodically invoke an algorithm 
that searches for a cycle in the graph.



Resource-Allocation Graph
Corresponding 
wait-for graph



Deadlock detection with multiple instance 
resources



Detection Algorithm   [Coffman et al. 1971]

1.   Vectors  Work[1..m],  Finish[1..n]  initialized by:

   Work = Available

   for i = 1,2, …, n,    if Allocationi  0  then Finish[i] = false
                           otherwise                   Finish[i] = true

2. Find an index i such that both:

   (a) Finish[i] == false

   (b) Requesti  Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi

Finish[i] = true
go to step 2.

4. If Finish[i] == false, for some i, 1  i   n, 
     then the system is in deadlock state. 
Specifically, if Finish[i] == false, then Pi is deadlocked.



Difference to Banker's algorithm
● What is a safe state?

– Consider the actual request (optimistically), 
not the maximum needs

● Reason: We compute if there is a deadlock 
now, not if one may happen later.



Example of Detection Algorithm
● 5 processes P0 … P4

● 3 resource types:
A (7 instances),  B (2 instances),  C (6 instances)

● Snapshot at time T0:
 Allocation Request Available

   A B C A B C       A B C

P0  0 1 0     0 0 0    0 0 0

P1   2 0 0     2 0 2

P2  3 0 3     0 0 0 

P3  2 1 1     1 0 0 

P4  0 0 2     0 0 2

● Sequence <P0, P2, P3, P1, P4> yields Finish[i] = true 
for all i. 



Example (Cont.)
● P2 requests an additional instance of type C.
Allocation Request Available

   A B C            A B C         A B C

P0  0 1 0            0 0 0   0 0 0

P1   2 0 0            2 0 2

P2  3 0 3            0 0 1 

P3  2 1 1            1 0 0 

P4  0 0 2            0 0 2

● State of system?
– Can reclaim resources held by process P0, but 

insufficient resources to fulfill other process’ requests.
– Deadlock exists, consisting of processes P1,  P2, P3, P4.



Detection-Algorithm Usage
● When, and how often, to invoke depends on:

– How often a deadlock is likely to occur?
– How many processes will need to be rolled back?

● one for each disjoint cycle

● Invocation at every resource request?
– Too much overhead

● Occasional invocation?
(e.g., once per hour, or whenever CPU utilization 
below 40%)



Recovery from Deadlock:  Process 
Termination

● Abort all deadlocked processes.

● Abort one process at a time until the deadlock cycle is 
eliminated.
 

● In which order should we choose to abort?
– Priority of the process.
– How long process has computed, 

and how much longer to completion.
– Resources the process has used.
– Resources the process needs to complete.
– How many processes will need to be terminated.



Summary
● Deadlock characterization

– 4 necessary conditions (Coffman)
– Resource allocation graph

● Deadlock prevention
– Prohibit one of the four necessary conditions

● Deadlock avoidance
– 1 instance-resources:  Resource allocation graph algorithm
– Banker’s algorithm  (state safety,  request granting)

● Deadlock detection and recovery
– 1 instance-resources:  Find cycles in Wait-for graph
– Several instances:  Deadlock detection algorithm

● Do nothing – lift the problem to the user / programmer
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