
1

TDDB68 + TDDE47 + TDDD82

Lecture:
Deadlocks

Mikael Asplund
Real-time Systems Laboratory

Department of Computer and Information Science

Thanks to Simin Nadjm-Tehrani and Christoph Kessler for much of the material behind these slides.

2

Reading guidelines

● Silberschatz et al.,
– 9th edition: chapter 7 Deadlocks
– 10th edition: chapter 8 Deadlocks

● Worth checking out:
– https://github.com/angrave/SystemProgramming/

wiki

3

Consider interleaving the following

Process A

while true {

 print(A)

 print(K)

}

Process B

while true {

 print(T)

 print(C)

}

Program execution

...

...

...

...

...

...

A

TA

TAC

AT

ATC

AK

TACK

TAK

TACKT

ATCT

AKTT

Correctness properties

● Safety properties
– Something bad will not happen

● Liveness properties
– Something good will happen (eventually)

● More on this way of reasoning in the Software
Verification course!

Progress

● A form of liveness

● Mathematically defined within a given system model
– Can be defined on system or process level
– Typically ensures that if system is in some state s, then it will reach

some other state s' where some property P holds.

● Implies freedom from:
– Deadlock
– Livelock
– (Starvation depending on the model)

Deadlock

Deadlock occurs when a group of processes are locked
in a circular wait (more on this soon).

Livelock

1. Free
passage

2. Start
driving

3. Passage
blocked

4. Back
off

Livelock occurs when a group of processes are stuck in
a loop of actions where they stop each other from
progressing

● Freedom from deadlock is fundamental to any
concurrent system

● Necessary but not sufficient for progress!

● Topic for the rest of this lecture

Deadlock-freedom

Earlier

● Mutual exclusion and condition synchronisation
– Semaphores
– Monitors
– Concurrent data structures

● Worked well for single resource

● What about multiple resources?

Simple deadlock situation

S1

P1

P2

S2

● Two semaphores
– S1 for resource R1
– S2 for resource R2

Process P2:

wait(S1)

wait(S2)

...

signal(S2)

signal(S1)

Process P1:

wait(S2)

wait(S1)

...

signal(S1)

signal(S2)

Coffman conditions

Four necessary conditions for deadlock:

1. Mutual exclusion

 Access to a resource is limited to one (or a limited
number of) process(es) at a time

2. Hold & wait

A process may hold a resource and wait for another
resource at the same time

3. Voluntary release

Resources can only be released by a process
voluntarily

4. Circular wait

There is a chain of processes where each
process holds a resource that is required by
another process

Resource-Allocation Graph

Process

Resource type
with 4 instances

Pi requests an

instance of Rj

Pi is holding an

instance of Rj
Pi

Pi

Rj

Rj

Which of these have a dealock?

A B C

Menti code: 46 75 25

Basic Facts
● Graph contains no cycles  no deadlock.

● Graph contains a cycle 
– if only one instance per resource type, then

deadlock.
– if several instances per resource type, possibility

of deadlock.

Deadlock elimination

Four approaches:

● Deadlock prevention
● Deadlock avoidance
● Deadlock detection and treatment
● Ignore the problem

State transition
(in terms of resources)

Resource is
acquired or
released

Program execution with deadlock

...

...

...

...

...

...

Deadlock prevention

...

...

...

...

...

...

...

Deadlock prevention:
Ensure that at least one of the Coffman

conditions can never occur

Prevent mutual exclusion (ME)
● ME is needed only for limited shared

resources

● Example: Read-only-file access by arbitrarily
many readers
– Readers-writer lock

Prevent Hold&Wait
● Whenever a process requests a resource, it

cannot hold any other resources.

● Request all resources at once
– Dining philosopher solution

● Low resource utilization; starvation possible;
not flexible.

Ensure preemption
● Force another process to release its resources

● Preempted resources are added to the list of
resources for which the process is waiting.

● Process will be restarted only when it can regain its
old resources, as well as the new ones that it is
requesting.

Prevent circular wait
● Impose a total ordering of all resources

– requests must be performed in this order.

● Priorities of processes and resources
– e.g., Immediate Ceiling Protocol in Real-time

scheduling

Tools to eliminate circular wait

● Windows driver verifier

● Linux lockdep tool

● Static analysis tools
– Cbmc for pthreads

(http://www.cprover.org/deadlock-detection/)

...

...

...

...

...

...

Deadlock avoidance

Safe state

System is in safe state if there exists a safe
sequence (i.e., completion sequence) of all
processes.

Safe states and deadlocks

● If a system is in safe state  no deadlocks.

● If a system is in unsafe state  possibility of deadlock.

● Avoidance:
ensure that a system will
never enter an unsafe state.

s

s’

s’’

grant request

??

Assumptions

● Requires a priori knowledge of needed
resources

● Assume that each process declare the amount
of resources needed

Deadlock Avoidance Algorithms

Avoidance Algorithms for 2 Cases:

● Case 1: All resource types have 1 instance only
– Resource Allocation Graph Algorithm

● Case 2: Multiple instances per resource type
– Banker’s Algorithm

Banker’s algorithm

● Multiple instances of each resource

● Upon each process request
– Check that the request is within the maximum limit

for that process
– Check that the new state is safe

Rejecting a request

● When allocating a request does not lead to a
new “safe” state:
– Refuse to grant

● The request can be repeated in some future
state and get granted

Inputs and outputs of Banker's

● Input:
– Matrix Max
– Vector Available
– Matrix Allocation
– Request[i] for some process i (* Request[i] =< Available *)

● Output:
– Yes + new state, or
– No + unchanged state (Request[i] can not be allocated now)

Data structures

Available: Vector of length m. If Available[j] = k, there are k
instances of resource type Rj available

Max: n x m matrix. If Max [i,j] = k, then process i may
request at most k instances of resource type Rj, Max[i]
denotes the i'th row.

Allocation: n x m matrix. If Allocation[i,j] = k then i is
currently allocated k instances of Rj, Allocation[i] denotes the
i'th row.

Need: n x m matrix. If Need[i,j] = k, then i may need k more
instances of Rj to complete its task, Need[i] denotes the i'th
row.

Let n = number of processes, and m = number of resources types.

 Banker's algorithm

1. Need := Max – Allocation

 Check that Request[i] <= Need[i]

2. Check whether Request[i] <= Available

 if not, return ”No”

3. Pretend that resources in Request[i] are to be allocated, compute new
state:

 Allocation’[i] := Allocation[i] + Request[i]

 Need’[i] := Need[i] - Request[i]

 Available’ := Available – Request[i]

4. Test whether the new state is deadlock-avoiding (denoted safe), in which
case return ”Yes”.

Otherwise, return ”No” - roll back to the old state.

Testing for safe state

● Start with a given Allocation’ and check if it is
safe (avoids future deadlocks) according to the
3-step algorithm.

Safety algorithm data structures

Finish: n vector with Boolean values (initially
false)

Work : m vector denotes the changing resource
set as the processes become ready and release
resources (initially Work := Available’)

1. Check if there is some process i for which Finish[i] = false and for
which Need’[i] <= Work. If there is no such process i, go to step 3.

2. Free the resources that i has used to get finished:

Work := Work + Allocation’[i]

Finish[i] := true

continue from step 1.

3. If Finish[i] = true for all i then the initial state is deadlock-avoiding,
otherwise it is not.

Safety algorithm

Python code

Generated problem

Weaknesses of Banker's algorithm?

Weaknesses of the Banker’s
Algorithm

● Assumes a fixed number of resources
– not realistic – number of resources can vary over time

● Assumes a fixed population of processes
– not realistic for interactive systems

● Assumes that processes state maximum needs in advance
– often not known

(depend e.g. on input data or user commands)

● Waiting for completion of one or several processes may take very
long / unpredictable time before a request is granted

Deadlock Detection and Recovery
● Allow system to enter deadlock state

● Detection algorithm
– Single instance of each resource type
– Multiple instances

● Recovery scheme

Menti question (46 75 25)
Which of the following statements are true about
deadlocks?:

A. If there is only a single instance of every resource, a cycle in
the resource allocation graph means that there is a deadlock.

B. All four Coffman conditions must me met for there to be a
deadlock.

C. Banker’s algorithm is used to detect and remove deadlocks.

D. Banker’s algorithm guarantees freedom from starvation.

Deadlock detection

...

...

...

...

...

...

Deadlock detection with single instance
resources

Search for cycle in wait-for graph
● Maintain wait-for graph

– Nodes are processes.
– Pi  Pj

iff Pi is waiting for Pj.

● Periodically invoke an algorithm
that searches for a cycle in the graph.

Resource-Allocation Graph
Corresponding
wait-for graph

Deadlock detection with multiple instance
resources

Detection Algorithm [Coffman et al. 1971]

1. Vectors Work[1..m], Finish[1..n] initialized by:

 Work = Available

 for i = 1,2, …, n, if Allocationi  0 then Finish[i] = false
 otherwise Finish[i] = true

2. Find an index i such that both:

 (a) Finish[i] == false

 (b) Requesti  Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi

Finish[i] = true
go to step 2.

4. If Finish[i] == false, for some i, 1  i  n,
 then the system is in deadlock state.
Specifically, if Finish[i] == false, then Pi is deadlocked.

Difference to Banker's algorithm
● What is a safe state?

– Consider the actual request (optimistically),
not the maximum needs

● Reason: We compute if there is a deadlock
now, not if one may happen later.

Example of Detection Algorithm
● 5 processes P0 … P4

● 3 resource types:
A (7 instances), B (2 instances), C (6 instances)

● Snapshot at time T0:
 Allocation Request Available

 A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

● Sequence <P0, P2, P3, P1, P4> yields Finish[i] = true
for all i.

Example (Cont.)
● P2 requests an additional instance of type C.
Allocation Request Available

 A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 1

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

● State of system?
– Can reclaim resources held by process P0, but

insufficient resources to fulfill other process’ requests.
– Deadlock exists, consisting of processes P1, P2, P3, P4.

Detection-Algorithm Usage
● When, and how often, to invoke depends on:

– How often a deadlock is likely to occur?
– How many processes will need to be rolled back?

● one for each disjoint cycle

● Invocation at every resource request?
– Too much overhead

● Occasional invocation?
(e.g., once per hour, or whenever CPU utilization
below 40%)

Recovery from Deadlock: Process
Termination

● Abort all deadlocked processes.

● Abort one process at a time until the deadlock cycle is
eliminated.

● In which order should we choose to abort?
– Priority of the process.
– How long process has computed,

and how much longer to completion.
– Resources the process has used.
– Resources the process needs to complete.
– How many processes will need to be terminated.

Summary
● Deadlock characterization

– 4 necessary conditions (Coffman)
– Resource allocation graph

● Deadlock prevention
– Prohibit one of the four necessary conditions

● Deadlock avoidance
– 1 instance-resources: Resource allocation graph algorithm
– Banker’s algorithm (state safety, request granting)

● Deadlock detection and recovery
– 1 instance-resources: Find cycles in Wait-for graph
– Several instances: Deadlock detection algorithm

● Do nothing – lift the problem to the user / programmer

	Slide 1
	Slide 2
	Before next lecture: Exercise
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Resource-Allocation Graph
	Example of a Resource Allocation Graph
	Basic Facts
	Deadlock elimination
	Slide 18
	Deadlock prevention
	Slide 20
	Slide 21
	Slide 22
	Deadlock Prevention
	Deadlock Prevention (Cont.)
	Slide 25
	Slide 26
	Deadlock avoidance
	Slide 28
	Slide 29
	Slide 30
	Deadlock Avoidance Algorithms
	Banker’s algorithm
	Rejecting a request
	The algorithm
	Slide 39
	Slide 40
	Testing for safe state
	Slide 42
	Summary
	Slide 45
	Slide 46
	Slide 47
	Weaknesses of the Banker’s Algorithm
	Deadlock Detection and Recovery
	Slide 50
	Deadlock detection
	Slide 52
	Deadlock Detection, Single Instance of Each Resource Type
	Slide 54
	Slide 55
	Detection Algorithm [Coffman et al. 1971]
	Slide 58
	Example of Detection Algorithm
	Slide 60
	Detection-Algorithm Usage
	Recovery from Deadlock: Process Termination
	Slide 64

