
TDDE47/TDDE68:

Concurrent programming

and Operating Systems
Lab C: Multitasking

2026-01-15

Dag Jönsson

IDA/SaS

TDDE47/TDDE68 Lab C

1 Introduction

1.1 Goal
In this lab you will start to work with concurrency and synchronization. You will take

your OS from only being able to run a single user program per boot, to being able to

run several different programs concurrently. Also known as multitasking.

To do this you will need to implement 3 more system calls. One of which you’ve already

started working on.

1.2 Reading material
You probably haven’t had some of the lectures yet, and that is fine. The later lectures

will tackle concepts that are more relevant for the later assignment.

• Lectures 3, 4, 5, and 6

• Course literature chapters:

• 3.2-3.4: Process scheduling to Interprocess Communication

• 4.3 Multithreading models

• 4.6 Threading issues

• 6: Synchronization Tools

• Stanford Pintos:

• Reference Guide Specifically A.3.2, A.3.3, A.5.2

• Files:

• threads/synch.h

• userprog/process.c

• threads/thread.[h,c]

• lib/kernel/list.[h,c]

1.3 Preparatory question
In the following text we will use the following definitions:

• parent = parent process

• child = a child process to some parent

Question 0: Basic concurrency

a) What is the main idea behind concurrency?

b) What is one of the main problems with concurrency?

c) What is synchronization? When is it important to use?

d) What tools do you have available in Pintos to achieve concurrency?

e) How many CPU cores are available in Pintos?

f) What threading model does Pintos utilize?

Question 1: Process creation

The following questions should be answered in the context of Pintos, and should help

orient you for the assignments.

a) What functions are involved when a new process is started? What are their

responsibilities?

2 / 9

https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_6.html

TDDE47/TDDE68 Lab C

b) How do these functions communicate between each other?

c) How many threads are involved in creating a new process?

d) During the process creation, What functions run on which thread? (parent or

child thread)

e) How would a parent know if the child started correctly?

f) If the previous answer was “It doesn’t” or similar: What changes would be

needed to make it possible for the parent to know the status of the child startup?

g) If the new process was started correctly, what is the expected return value of

process_execute() ?

h) Is there a difference between pid_t and tid_t ? What in that case?

Tip: Take a sneak peek at Figure 1.

Question 2: Semaphores

a) What operations can you use to manipulate a semaphore? What do they mean?

b) Is it a good idea to look at the internal values of a semaphore? Why/why not?

c) What happens when a thread calls sema_down() on a semaphore that currently

has an internal value of 0?

d) What happens when a thread calls sema_down() on a semaphore that currently

has an internal value of 1?

e) What happens when a thread calls sema_up() on a semaphore that currently

has an internal value of 0?

f) Can you think of a use case for the previous answers in the context of your

answers for Question 1?

At this stage you should be ready to create a solution for Assignment A.

Question 3: Process termination

This and below prep question can be saved until you start working on Assignment B.

a) What functions are involved in terminating a process?

b) What is the exit status used for? When should it be −1? When can it be any other

value?

c) What process is interested in another process’ exit status? What process should

be able to read the exit status of another process?

d) When will the exit status be available?

e) Where should the exit status stored? Why?

Tip: You can take a peek at Figure 2 if you get stuck, it might help.

Question 4: Process waiting

a) What do we mean when we say “The parent is waiting on the child”? What is it

waiting for?

b) What processes can a process wait on? Any? A specific set?

c) Is a parent process required to wait on all of its children?

d) Is there a function already defined that “waits” on a process? Are there any

issues with it? If so what?

3 / 9

TDDE47/TDDE68 Lab C

e) Is the above function called anywhere?

Question 5: Locks

a) What operations can you use to manipulate a lock?

b) Is it a good idea to look at the internal values of a lock? Why/why not?

c) What happens when a thread calls lock_acquire() on a lock that is already held

by another thread?

d) What happens when a thread calls lock_release() on a lock that is already held

by another thread?

e) What is the difference between a lock and a binary semaphore? Why do we even

have locks?

Question 6: Lists

In Pintos we have some already defined data structures, in this question we are

interested in the linked list declared and defined in lib/kernel/list.[h,c] . The files

contains a lot of comments that explains pretty much everything you need to know.

You are not expected to understand it completely, but knowing how you can use, and

read about, it is important.

a) What operations does the list implement?

b) What struct is actually “stored” in the list? What struct is responsible for the links

between the nodes?

c) How is it possible for the list to store any data type?

d) How do you get the stored data type back out of the list? Give an example.

e) How can you iterate through a list? Are there any pitfalls when doing so that you

should be aware of? (Hint: What happens if we are removing elements while

iterating?)

If you want to experiment with the Pintos list, you can find some prepared files in

pintos/standalone/plist . Slightly easier to test your theories when you don’t have to

worry about the rest of Pintos.

2 Assignment A: exec

Start with studying Figure 1 if you haven’t already, it should help you understand what

the goal is, and what the current problem is. You can also use the figure to check your

answers in Section 1.3.

In short, the problem can be described as the following: process_execute() currently

doesn’t return a value we can trust. Your assignment is to fix that.

You will also need to wire up the exec system call.

• pid_t exec (char const *cmd_line)

Runs the executable given by cmd_line , any arguments will be put onto the new

process’ stack. If Pintos is unable to execute the cmd_line for any reason, return

−1. Otherwise, return the (process) id given to the new process.

4 / 9

TDDE47/TDDE68 Lab C

2.1 Testing
In examples you have two files, exec-simple.c and exec-loop.c . Just like previous

examples you have a comment at the top that explains how to run them, and what to

expect if they are run successfully.

Figure 1 — Process creation

5 / 9

TDDE47/TDDE68 Lab C

3 Assignment B: wait , exit

Similar to what you did in Assignment A, you should start by studying Figure 2. In this

figure you can see some different interactions between a parent and child process.

You can also see an extra block between the time lines of the child and parent threads,

with some dotted lines going back and forth. This block is to signify the minimum

“process information” lifetime. You should already have some experience with the

“process information”, since you’ve fixed a bug with it in the first lab.

3.1 Details
In this assignment you will need to wire up the wait system call.

• int wait (pid_t pid)

Return the exit status of the child process with the id pid . If the child hasn’t

finished executing yet, will wait until it has. If the child has already terminated,

return immediately without waiting. If the child terminated abnormally, the exit

status to return should be −1. If the parent has already waited on that child once,

return −1. If pid refers to a process that is not a direct child to the calling

process, return −1.

You will also need to revisit exit .

• void exit (int status)

Terminates the current user program, passing the exit status to the kernel. A

parent should be able to fetch the exit status by calling wait .

In this lab you will need to work a bit with the “process information” struct. The details

are up to you to figure out, but consider the following:

• Any access to shared memory need to be synchronized.

• As soon as the struct is not needed anymore, it should be destroyed and any

dynamically allocated memory freed.

• A process should be able to create an arbitrary number of child processes.

It’s up to you to figure out what modifications you will need to apply to the struct, and

how to utilize it.

You should study Figure 2 carefully to make sure you’ve covered all the cases. You

will need to extend your solution in Assignment A to support your solution in this

assignment.

6 / 9

TDDE47/TDDE68 Lab C

Figure 2 — Process flow

7 / 9

TDDE47/TDDE68 Lab C

3.2 Testing
You have finally reached the point in your work on Pintos that you can start using

the test suite that we hinted at previously. To run the test suite, simply run

make -j8 check from pintos/userprog . You will have some tests failing, 12 are

expected to not be passable for now. See below list for which tests you can safely

ignore for now.

• tests/userprog/sc-bad-sp

• tests/userprog/sc-bad-arg

• tests/userprog/sc-boundary-3

• tests/userprog/create-null

• tests/userprog/create-bad-ptr

• tests/userprog/open-null

• tests/userprog/open-bad-ptr

• tests/userprog/read-bad-ptr

• tests/userprog/write-bad-ptr

• tests/userprog/exec-bound-2

• tests/userprog/exec-bad-ptr

• tests/userprog/wait-killed

The test suite is fairly exhaustive, so don’t be surprised if you fail some tests

that you’ve implemented the solution for in the previous lab. It does not cover

absolutely everything! For instance, it doesn’t catch memory leaks. And no, valgrind

does not work in Pintos. If you want to run a basic leak check you can run the

examples/basic_syscall.c file with the -L flag to Pintos (after the --). I.E.

pintos -v ... -a sysc -- -f -q -L run sysc .

The memory checker isn’t perfect, but if you see any of the functions you have used

showing up in the resulting list, you very likely have a leak and should investigate. If

you are unsure, discuss it with your assistant.

Back to the test suite, it works by comparing the output from Pintos against

an expected result. To check the results of the tests, you can check in the

userprog/build/tests/userprog directory. Here you will find files like halt.allput ,

halt.output , halt.result and a couple of others that are not of much interest.

Looking through the following files should be enough:

• .allput : Includes everything that Pintos printed during execution. Includes the

debug() printouts. Might be helpful to track when processes are being started and

terminated, and look for any debug prints you’ve added yourself.

• .output : Same as .allput , but excludes the debug() printouts. This is the file

the test suite will run its matcher on.

• .result : Will contain a message trying to convey what went wrong. Often it will

be a diff between the expected result and the actual result. Anything starting

with a + is something that was printed when it should not have been printed.

Anything starting with - are lines that we expected to be printed, but weren’t.

8 / 9

TDDE47/TDDE68 Lab C

Sometimes there are several different expected outputs, in which case it will show

the difference between all expected results.

If you want to rerun the test suite, the safest way to make sure they are all run is

to do a make clean first. It’s very common to forget to do that and then get weird

results back.

If you want to run a single test, you can use the pintos-single-test utility. If for

example you want to specifically run the halt test, then you would call it like:

pintos-single-test tests/userprog/halt .

You are also free to read and study the test files themselves. Sometimes it’s easier

to understand what goes wrong when you can see the code causing the issue. Please

note that you shouldn’t modify anything in the tests/ directory.

4 Demonstration

For the demonstration you are expected to:

• Show that your solution passes the relevant tests in the test suite.

• Be able to answer questions of similar character as the prep questions.

• Be able to explain the modifications you made to Pintos in order to make exec ,

wait , and exit to work as expected.

• Show an understanding of how semaphores and locks work.

9 / 9

	1 Introduction
	1.1 Goal
	1.2 Reading material
	1.3 Preparatory question
	 Question 0: Basic concurrency
	 Question 1: Process creation
	 Question 2: Semaphores
	 Question 3: Process termination
	 Question 4: Process waiting
	 Question 5: Locks
	 Question 6: Lists

	2 Assignment A: exec
	2.1 Testing

	3 Assignment B: wait, exit
	3.1 Details
	3.2 Testing

	4 Demonstration

