LINKOPINGS UNIVERSITET

TDDE47/TDDE68:
Concurrent programming

and Operating Systems
Lab B: System call handler

2026-01-15

Dag Jonsson
IDA/SaS

TDDE47/TDDE68 Lab B

1 Introduction

1.1 Goal

In this lab the goal for you is to build an understanding of what system calls are, how
they work under the hood, and the reason behind why system calls are implemented
in the way they are. You should also start building an understanding of what dual mode
in the context of operating systems are, and what design choices are made because
of this.

You will also implement a basic system call handler in Pintos, so that in the end you
will have a limited, but fairly functional operating system.

1.2 Reading material
To help you achieve these goals, you should study the following material.

We want to reiterate the following from the previous lab:

Below you have some reading material from Stanford (upstream Pintos). Please do
remember that you are taking a course at LiU, and any instruction given in the below
documentation should be ignored, our instructions take precedence. These links
should be treated only as documentation, i.e. ignore any statements like “You will
implement this is project 1”.

Lecture 1
Course literature chapters:
- 1.1-1.6: Introduction
- 2.3-2.4: System calls, System Services
- 3.1: Process Concept
- 12.2.3: Interrupts
Stanford Pintos:
- Introduction Specifically 1.1.1
« Project 1: Threads Specifically 2.1.1
« Project 2: User programs Specifically 3.1.2, 3.1.4, 3.3.4, 3.5, 3.5.2
- Reference Guide Specifically A.2.1,A.2.2,A.4,A.4.1,A.4.2
- Files:
e lib/user/syscall.[h,c]

« 1lib/syscall-nr.h

e userprog/syscall.c

* struct intr_frame in threads/interrupt.h
o« filesys/filesys.h

« filesys/file.[h,c]

o threads/thread.h

The Files should be studied in such a way that you know what functions and structures
already exist, and have an idea of how they are used. There are usually a comment
or two in the source code that you can, and should read, to understand that part of

2/10

https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_1.html#SEC3
https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_2.html
https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_3.html
https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_6.html

TDDE47/TDDE68 Lab B

Pintos. You are of course free to read any other file as you please, but these have been
identified as the ones you will need to work with in this lab.

1.3 Preparatory question

To help build up your understanding of the necessary concepts, here are some
preparatory questions. They are designed to help you understand what you need to do
in Pintos, and will hopefully save you time if you answer these. You should be able to
find the answer in material referenced in Section 1.2, or otherwise discuss with your
lab assistant. If you get stuck on a question, feel free to skip over it and discuss it with
your assistant when time permits.

Question 0: Basic operating systems
a) What is the point of an operating system?
b) What is user space?
c) What is kernel space?
d) What is a user program?
e) What is a software (internal) interrupt?
f) What (in Pintos) is the difference between a thread and process?

Question 1: System calls

a) What is the idea behind system calls?

b) How are system calls made from user space in Pintos? What functions are
involved in user space?

¢) What functionin kernelspaceisresponsible for handling/servicing a system call?

d) How many system calls are already defined in the Pintos user space?

e) Why can’t the system calls just be normal functions? Why do they need to
execute in kernel space?

Question 2: Interrupts
Pintos only make use one interrupt (©x30) for all system calls, so there is only one
interrupt handler that handles system calls. With that in mind,

a) Howis it possible to distinguish between different system calls made from within
this handler?

b) Where are the arguments of a system call stored (if there are any) and how can
the system call handler access them?

Question 3: Dual mode
a) Where in memory is the user space stack of a process located? Where is the
kernel stack located?
b) What is the reason behind having two stacks instead of just one?
¢) How can the kernel access user space memory? In particular, how is it made
possible in interrupt handlers?

Question 4: Memory concerns
When a user program makes a system call like open(filename) , an addresstoastring
containing the file name is provided as an argument.

3/10

TDDE47/TDDE68 Lab B

a) In what memory (stack) is this string stored?

b) How can the kernel access it? Why?

c) Can you think of any potential problems with having the kernel accessing data
through user space provided pointers?

d) Inthe case of open , user space is also expecting a value back (a return value),
where would that value be stored so that the user program can access the return
value?

Question 5: File system
a) What kind of high level file system operations does Pintos already support?
b) How is a file represented in Pintos?
¢) What kind of file operations does Pintos already support?

Question 6: File descriptors

When a user program requests a file to be made ready to work with, they make a call
to open(filename) , and get back a file id, known as a file descriptor, shortened to fd.
These file descriptors are then use by the user program to reference a file for example
when it want to read from it or write to it.

a) What kind of data type would be a good fit for a file descriptor?

b) Why do operating systems use file descriptors? Why not just return a pointer to
the file?

c) How could the kernel keep track of what file a given file descriptor corresponds
to, given that file descriptors are per process? How does the kernel keep track
of the process?

d) How do we get access to the current thread?

e) What would be a simple way of creating the file descriptor?

f) Are there any special file descriptors already defined in Pintos? Which ones in
that case? What are they used for?

2 Assignment: System call handler

Now that you have started to build an understanding of how a user program can
communicate with the kernel, and the rationale behind the separation, we can start
to think about the coding assignment.

You are not expected to write a file system, or implement interrupt handling, since
almost everything you need is already implemented. You are expected to wire up the
kernel side of system call handling, by writing code that do the following steps:

- Check what system call was made.

- “Extract” the correct number of arguments for the given system call.

- Orchestrate the calling of the functions that are needed to make the system call
happen.

- Store any potential new state in the thread context.

4/10

TDDE47/TDDE68 Lab B

- Return the expected value to the user program depending on outcome of the
above.

You will need to create a solution to manage file descriptors, look back to your answers
in Section 1.3.

The list of system calls you are expected to implement is found in Section 2.2.
You can find a list of requirements and limits in Section 2.3.

There is a test program you should use as a starting point, see Section 2.4.

2.1 Tips for an “easier” time through the lab series

Read before you code. Every year we have a group of students who are way to eager to
start writing code, because they want to finish quickly. However, they end up spending
more time fixing and debugging their code than the students who take their time
reading and understanding the problem, and then create a solution.

Try to write your code in a structured way. The system call handler is something you
will revisit throughout the lab series, so it will save you time in the long run if you try to
maximize the readability and extendability of your solution. Prefer to write clear code
above clever, short code. Your future self will thank you!

Also think of the Pintos project as your project now. If you want to add new functions
to solve a problem, go right ahead. It’s your project. But at the same time, for your own
sake, don’t change everything just because you can. The problems you are trying to
solve might already be halfway solved, you just have to call the right functions.

Keep in mind that the instructions aren’t telling you exactly how to solve the problems
presented to you by design, because it’s up to you to learn, test and research on your
own. The assistants are there to help guide you, but will not solve the problem for you.

If you feel unsure if you are expected to do something or not, discuss it with your lab
assistant before spending too much time on it to avoid unnecessary frustration.

Use git efficiently! A suggestion is to work on each lab in their separate branches, and
once you’ve demonstrated (and fixed any potential issues spotted during demonstra-
tion) you merge your solutioninto main and hand inyour solution based onthe main
branch. Creating a branch per lab makes it easy for you to “bookmark” your work for
that lab, and makes it easier to start work on the next lab. If you need to fix anything
spotted after handing in you can easily checkout the old branch, implement and test
your fixes, and then making use of merge / rebase togetthose changesintoyournew
working branch.

Commit often, suggestion is to commit once you’ve implemented and tested a solution
for a smaller problem (for example a specific syscall). If you run into an issue and you
are unable to figure out why you have the issue, being able to go back to a working
state and starting over is sometimes faster than debugging.

5/10

TDDE47/TDDE68 Lab B

If you add any code outside of the pintos/userprog directory, you should wrap your
code in the following:

#ifdef USERPROG
. YOUR CODE ...
ffendif

This is to make sure that your changes doesn’t affect the different modules in Pintos
if we decide to compile without a user space (what pintos/userprog represents). For
example, you can compile just the kernel, pintos/threads , and run tests on those
parts specifically.

And finally, read through the assignment in full first, create a strategy (suggestion is
to solve the ‘easiest’ problem first), and work methodically forward.

2.2 System calls
Read through the list before you start to code!

In this assignment, you need to implement the kernel side of the following system
calls:

e void sleep (int millis)

Makes the current process sleep for millis milliseconds. You can find some
useful functions in devices/timer.h .

Note: This system call does not exist in user space yet, you will need to add it
in user space as well. This is the only exception, the rest are already wired up in
user space.

e void halt (void)

Shuts down the whole system. Use shutdown_power_off() for that, which is de-
clared in devices/shutdown.h . This system call should not be used to terminate
any potential programs you write yourself. I.e. halt does not replace exit .

e bool create (char const xfile, unsigned initial_size)

Createsanewfilecalled file ,withtheinitialsizesetto initial_size .Returns
true if it was created successfully, false otherwise.

« 1int open (char const *xfile)

Opens the file called file . Returns a non negative integer handle, called file
descriptor (fd), or -1 if the file could not be opened. Each call to open should
create a new fd if possible.

e void close (int £d)

Closes the file corresponding to the given £d , freeing up any memory allocated
in the kernel.

e int write (int fd, void const *xbuffer, unsigned size)

6/10

TDDE47/TDDE68 Lab B

Writes size bytes from buffer into an already open file corresponding to £d .
Returns the number of bytes actually written or -1 if the file could not be written
to.

Writing past end-of-file would normally extend the file, but file growth is not
implemented by the basic file system. The expected behaviour is to write as many
bytes as possible up to end-of-file and return the actual number of written bytes,
or -1 if no bytes could be written.

Tip: Implement write to sTtoouT first, then tackle writing to files. In fact, you
should implement writingto sTpouT before tackling files at all, since it will make
it possible for user programs to use printf .

Hint: You can find some useful functions for STbouT in 1lib/kernel/stdio.h .
e int read (int fd, void const xbuffer, unsigned size)

Reads size bytes from an already open file corresponding to fd into buffer .
Returns the number of bytes actually read, or -1 if the file could not be read (due
to a condition other than end of file). If reading from STDIN , the user should
be able to see what they type while typing, just like you would expect from the
terminal on any Linux machine. You do not need to implement erasing characters
if backspace is pressed.

Tip: Just like with write, implement reading from sTDIN before tackling files. This
is to make it possible for user programs to get input from the user.

Hint: You can find some useful functions for STDIN in devices/input.c .
e bool remove (char const xfile_name)

Removes the file with the name file name . Returns true if successful, false
otherwise.

e 1int filesize (int £d)
Return the file length of the file corresponding to £d .
e void seek (int fd, unsigned position)

Sets the current position in the file corresponding to fd to position . If the
position exceeds the file size, the position should be unchanged.

e« unsigned tell (int £d)
Returns the current position in the file corresponding to £d .
e void exit (int status)

Terminates the current user program, passing the exit status to the kernel (you
don’t have to worry about the status for now, you can just storeitinthe struct pi
for now).

Remember to free all the resources (e.g. close all open files) that are associated
with the process and wont be needed anymore. If you need to add some code

7/10

TDDE47/TDDE68 Lab B

to accomplish this, you should consider that Pintos itself calls thread_exit() to
destroy and cleanup threads, that functioninturncalls process_cleanup() . Think
about where you should place your cleanup code.

You will revisit exit in later labs.
2.3 Requirements and limits

 Your solution should be written in C.
- Every variable should be initialized to a known good value before using it.

« A single process should be able to open 32 concurrent files. If we have two
processes running, they should individually be able to have 32 files open.

« There should be no memory leaks. Consider that this is an operating system you
are building, which means there is no safety net. If you lose track of some memory,
that memory is lost until you reboot the machine.

= You do not have to worry about more than 1 thread/process for now, which means
you don’t have to think about synchronization just yet. You should however avoid
creating solutions that only works with 1 thread. Avoid singleton constructions.

= Any pointer passed by a user program is valid, for now. You do not have to imple-
ment any pointer validation yet. I.e, any pointer given by the user program can be
safely dereferenced. You can also expect any strings passed by the user program
to be valid C-strings.

« You will need to check the validity of the values given by user programs though.
If a system calls expects an integer value between 0 and 34, you should check
that before using the values. Invalid values should result in a “fail”-result be sent
back, if a return is expected.

2.4 Testing

To test your solution, you can run the examples/basic_syscall.c pro-
gram. See the comment at the top of the file on how to run it
When vyou have a working system call handler the test should not

print out any warnings or errors, and finish with the following printout:
If you got this far, you've passed all the tests this file offers!

If you wish to write your own programs to test smaller problems or specific cases,
feel free to do so. Make sure to place them in pintos/examples , and you will have
to modify the examples/Makefile to make your program compile. If you study the
files you should be able to figure out how to do it. You may also want to modify
examples/.gitignore to have gitignore the resulting binary file.

Some things to keep in mind if you decide to write your own programs:

« They should be written in C.

8/10

TDDE47/TDDE68 Lab B

- Floating point operations cannot be used because Pintos does not save the corre-
sponding information during process switch.

- Pintos user programs can use only those system calls which you will implement
in this and the following labs.

« The necessary system call for dynamic memory allocation, e.g. with malloc is
not implemented and it will not be implemented in these labs. Hence, you cannot
use dynamic data structures inside a user program. Bear in mind that you can still
use malloc in kernel code!

3 Demonstration

For the demonstration you are expected to:
- Be able to answer questions of similar character as the prep questions.
- Be able to discuss your solution, why you made the decisions you made.
- Show that the given example program works as expected.
 Argue for why your solution hasn’t introduced any memory leaks.

4 Quick guide to make

Throughout this lab series, you will be using make to build Pintos and example
programs, and later, run a test suite against your solutions. We do not have the time
to cover how make works in any detail, and especially not how it’s being used in the
Pintos project. However, there are some useful things to know.

- make Is fairly smart, and will only compile files that have actually changed. This
is generally a good thing since this saves you time in the long run!

- Sometimes make makes mistakes, and doesn’t catch that a file has been
updated, and thus doesn’t compile it. The easiest way to remedy this is to run
make clean . This will delete all the built files and next time you run make -j8
it will rebuild everything from scratch. If you start seeing weird behaviour after
making changes, check to make sure that your code actually compiled without
errors, if it did, try a make clean; make -j8 to see if it fixes the issue. If you are
still seeing weird behaviour, you’ve probably introduced a bug in Pintos, and you
should debug that.

- To make Pintos compile faster, you should pass the -j8 flagto make . This tells
make to make use of more threads, 8 in fact. You can play around with the number
of threads, but usually there is little point in going above the number of cores
(threads) that your CPU has. You can also omit the number, and just pass -j
which will cause make to notsetany limitonthe number of threads, which might
be quite a lot. Don’t be surprised if the computer fans start spinning faster.

9/10

TDDE47/TDDE68 Lab B

* You can run make in a different directory than the one you are currently
standing in by passing the -c <path> flag. For example: standing in
pintos/userprog ,we can have make compile the examples programs by running
make -j8 -C ../examples .

If you find make interesting, you can read more here: https://www.gnu.org/software/
make/manual/make.html or https://web.mit.edu/gnu/doc/html/make_21.html

It’s not expected, or even a part of this course, that you will understand make , so only
read if you really are interested. It will not help you in the lab series to understand
make , it’s enough to know how to make it build Pintos.

10/10

https://www.gnu.org/software/make/manual/make.html
https://www.gnu.org/software/make/manual/make.html
https://web.mit.edu/gnu/doc/html/make_1.html

	1 Introduction
	1.1 Goal
	1.2 Reading material
	1.3 Preparatory question
	 Question 0: Basic operating systems
	 Question 1: System calls
	 Question 2: Interrupts
	 Question 3: Dual mode
	 Question 4: Memory concerns
	 Question 5: File system
	 Question 6: File descriptors

	2 Assignment: System call handler
	2.1 Tips for an "easier" time through the lab series
	2.2 System calls
	2.3 Requirements and limits
	2.4 Testing

	3 Demonstration
	4 Quick guide to make

