
TDDE47/TDDE68:

Concurrent programming

and Operating Systems
Lab A: C, GDB, and Pintos

2026-01-15

Dag Jönsson

IDA/SaS

TDDE47/TDDE68 Lab A

1 Introduction

1.1 Goal
This lab has the following goals:

• Setup the project repository

• Practice using GDB to debug

• Practice programming in C

• Learn some tools to debug Pintos

As part of item 3 above you will be implementing a simple linked list in C, both to help

you get started writing C code, but also practice on using pointers. Debugging with

GDB is to help you debug problems further in the lab series.

Time estimate is roughly 4 hours if you already have an idea of how pointers work, 6

hours if not. The assignment should be seen as an introduction to C, GDB, and Pintos,

other concepts shouldn’t be new to you.

And we want to address the length of this instruction, the majority of the text is just to

read and following along with. We do not expect you to become experts at using GDB,

or writing C code, but there is quite a lot to discuss and explain. About 3-5 pages are

just pictures.

1.2 Prerequisites
To be able to work on these assignments you will need working knowledge on how

to use a Linux shell (bash), and working with git. If you need to refresh your memory,

check back on the material in your previous courses. A useful tutorial for git can be

found here: https://learngitbranching.js.org

It is highly recommended to configure your gitlab.liu.se account to use SSH keys, see

the documentation: https://docs.gitlab.com/user/ssh/

2 Project repository setup

In this section the goal is to create your own copy of the Pintos repository that you will

work on during this lab series.

2.1 Forking Pintos
You do not have to demonstrate anything for this section.

Start by navigating to the original repository: https://gitlab.liu.se/cpos/pintos Once

there, press the “Fork” button in the top right. Here you can fill out the information

as you please. Suggestion is to name the project according to the course code. Before

you create the fork, you should check that the following is set:

• Branches: You only need to fork ‘main’

• Visibility should be set to private

See Figure 1 for an example.

2 / 20

https://learngitbranching.js.org
https://docs.gitlab.com/user/ssh/
https://gitlab.liu.se/cpos/pintos

TDDE47/TDDE68 Lab A

Figure 1 — Example fork page

Once you have entered the requested information, press “Fork project”.

Once the repository is forked, invite your lab partner as owner, and your lab assistant

as reporter. See the list below for a list of LiU-ids.

List of assistants for 2026:

• Amin Bajand: mohba27

• Animesh Thakur: anith60

• Arvid Rämsberg: arvra591

• Dag Jönsson: dagjo87

• Masoud Sadrnezhaad: jjssa24

• Máté Földiák: matfo50

Once you have your repository set up in Gitlab, clone it to your computer. We will be

referring to the clone of the repo as pintos/ in future instructions.

2.2 Setting up the PATH
To be able to run Pintos, you need to modify your PATH variable. The easiest way to

do this is the following steps: Note: Only needs to be done once per student.

1. Navigate to the pintos/utils directory in a terminal

2. Run the following command in the terminal:

echo "export PATH=$(pwd):\${PATH}" >> ~/.bashrc; source ~/.bashrc

3 / 20

TDDE47/TDDE68 Lab A

This will add a line to your ~/.bashrc , updating your PATH variable to include the

pintos/utils directory. The source is just to reload the file you just modified so the

changes are immediate.

If you are using a different shell than what is default on the school machines, we

expect you to figure out the differences.

3 Assignment A: Reading C and GDB debugging

The goal of this section is to help you familiarize yourself with C, with a focus on

debugging using GDB. To keep it simple, this will be done outside of Pintos, which

means you will be running GDB normally. You will use GDB in Pintos later in this lab.

In the directory pintos/standalone/gdb you will find three C-programs: debug1.c ,

debug2.c , and debug3.c . These programs contains errors that will cause the pro

grams to crash when run. Your assignment is to find the problems using GDB, and then

fix the errors.

Note: In these programs we have supplied our own malloc and free functions to

make the programs crash faster when there are memory errors to make the debugging

a bit simpler. This does mean that similar problems made later in Pintos may not cause

a crash immediately, but rather later when you are working on new unrelated code.

3.1 Reading material
• GDB Documentation - Use as reference

• Sample session page - Sample session that may be helpful to get started

Some useful GDB commands to know:

• print var - prints information about the variable var .

• print *var - prints information about the dereferenced pointer var .

• run - run the program until either a problem occurs, a breakpoint occurs, or the

program finishes.

• continue - Continue running after execution stopped, for example after hitting a

breakpoint.

• break main - set a breakpoint at the start of the main function

• backtrace - print information about the call stack. Useful when an error has

occurred and you want to know how the program ended up where it is.

• step - Step to the next line of code. If the next line is a function call, will step into

that function.

• next - Step to the next line in the current function. Will skip over any function

calls.

• finish - Step to the end of the current function.

• list - print the source code around where the marker is.

For the instructions below, you should follow along in your GDB sessions.

4 / 20

https://sourceware.org/gdb/current/onlinedocs/gdb.html/
https://sourceware.org/gdb/current/onlinedocs/gdb.html/Sample-Session.html#Sample-Session

TDDE47/TDDE68 Lab A

3.2 Program 1: debug1.c
Compile the program with the command make debug1 . You can then run

the program like ./debug1 . You will notice that it crashes with a

Segmentation fault (core dumped) message. This means the program tried to access

memory that for some reason was not valid.

To get started debugging with GDB, you can run the following: gdb -tui ./debug1 .

The -tui flags means it will display the code in what GDB calls the Text User Interface.

If you don’t supply the flag and want to enable the TUI after the fact, you can write

tui enable within GDB, or by pressing CTRL+X , followed by CTRL+A . When you have

started GDB you will see something similar to Figure 2.

Figure 2 — Example GDB startup

5 / 20

TDDE47/TDDE68 Lab A

If your terminal is small you may see a message that says the follow

ing: Type <RET> for more, q to quit, c to continue without paging . This happens

when GDB tries to print more text than fits in the bottom screen. Simple press c and

press enter to get to the prompt (gdb) as in the picture. If you want to avoid this in

the future, make your terminal windows larger.

As you can see in the picture the interface consists of two parts. The upper part shows

the source code for the program. GDB will point out what parts are currently running,

what breakpoints are set and a couple of other things. Since the program hasn’t

started executing yet it doesn’t show too much of interest right now.

The bottom part consists of a “terminal” where you can enter commands to GDB,

and where GDB will answer with information about the program. The prompt (gdb)

means that GDB is ready and is waiting for commands. If you turn off the TUI this

terminal will be the only thing shown.

It is worth pointing out a couple of things about the TUI. In the picture above the upper

part is marked with a colored frame (yours should be blue, the picture shows a green).

This means it is in focus. If you press the arrow buttons you will scroll the code view. If

you press CTRL+X followed by a press of O , the frame will disappear. This means the

“terminal” in the bottom is in focus, and the arrows buttons will traverse the command

history (like in the normal terminal). If you are familiar with Emacs you might notice

that CTRL+X, O is the same command to switch window in Emacs. Several simple

commands in Emacs works the same in GDB.

Sometimes the TUI “breaks”. This can happen if the program you are debugging prints

to standard out, and “prints over” things that GDB handles. This can easily be fixed by

pressing CTRL+L , this will force GDB to redraw everything properly. In short, if GDB

starts to look weird, press CTRL+L , it can’t hurt!

Now you should be ready to start debugging. Execute the program by typing the

command run and press enter. It’s worth noting that almost all commands in GDB

can be shortened, as long as GDB can figure out what you mean it will usually do the

right thing. As an example, you can shorten run to just r instead. In these instruc

tions we will give the long commands, followed by the shorthand in parenthesis when

relevant.

When you have typed run (r) and pressed enter GDB will let the program execute.

In this case the program will print a few lines and then crash, like before. On my system

it looks like Figure 3.

(Exactly what is printed and how differs between systems and configurations, if I’m

not explaining or pointing out specific lines it means they are not important)

6 / 20

TDDE47/TDDE68 Lab A

Figure 3 — GDB TUI “breaking”

It’s not that bad in this picture, but the TUI has bugged out a bit, (because of the

printout from the program) so I press CTRL+L to redraw it and get result captured in

Figure 4.

7 / 20

TDDE47/TDDE68 Lab A

Figure 4 — Example of segfault

In the upper part we can see that GDB has marked the line that was execut

ing when the program crashed. In the bottom part we can see the message

received signal SIGSEGV, Segmentation fault . This is the same information we got

in the terminal previously. The next line tells us that the program crashed on address

0x0000000000401248 . This is not that interesting (we don’t know what is there, it will

also differ between different runs). GDB does however tell you it matches the line 41 in

the file debug1.c , and that it is in the function main . Same information is also shown

in the upper window.

8 / 20

TDDE47/TDDE68 Lab A

To start figuring out what went wrong in our program, we can inspect it with the help of

the command print (p). The command will evaluate a C-expression and print the

result. Almost everything that works in C also works in GDB (but not everything). Here

we can inspect the variable i by typing print i (p i). We then get the following:

$1 = 5

This means that i was 5. The $1 = part means we can use $1 in a later statement

if we want to reuse the result (i.e. gdb print $i + 2 gives 7).

Knowing that i was 5 we can now focus on the index 5 in the array. We can again

use print to inspect the program. Either we can do print data[i] , or we realize

that the value we are interested in already exists in the variable pointer from the line

before and print the pointer instead. We should then get the following back:

$2 = (int *) 0xcccccccccccccccc

This means that index 5 in the array (and the pointer) has the value

0xcccccccccccccccc , and the type is int * (pointer to int). Since the program

crashed on the line trying to dereference the pointer we should then suspect that this

pointer is not valid. To confirm this we can try to dereference the pointer with the

following print *pointer (in other words, the statement that we think crashed). We

then get the following:

Cannot access memory at address 0xcccccccccccccccc

This confirms our suspicion that the pointer is invalid. From here we can draw

the conclusion that index 5 in data is incorrect. Next question is why? We can

continue inspecting the program using GDB, by using a breakpoint. We do this by

typing in break (b), and supplying where the put the breakpoint. Either we can

supply a function name (e.g. break main) or a filename and a line number (e.g.

break debug1.c:41). In our case we want to set a breakpoint on line 35, so we type

break debug1.c:35 (or just break 35 since this is the file we can see in the upper

window). We should see a mark (b+) to the left of the line, and get the following

output:

Breakpoint 1 at 0x4011e9: file debug1.c, line 35.

Our breakpoint is in other words number 1. If we later want to disable this breakpoint

we can type disable 1 (dis 1). We can now rerun our program with the command

run (r) as before. GDB will ask you to confirm it’s okay to terminate the currently

running instance, answer yes (y). GDB will restart our program and print the

following:

Breakpoint 1, main () at debug1.c:35

This means the program has stopped at the breakpoint number 1 that we just created.

We can also note that the mark in the upper window now is shown as B+ to indicate

that we have hit that breakpoint at least once. We can again inspect our variables

print i (p i) to check the value of our counter. First time it’s obviously 0. From here

9 / 20

TDDE47/TDDE68 Lab A

we can ask GDB to continue running the program with continue (c). GDB will then

answer with:

 Continuing.

 Breakpoint 1, main () at debug1.c:35

This means we have again hit our breakpoint 1. We can verify this by printing the i

variable again, this time showing 1. Since we will want to this several times we can

ask GDB to print it after each command, by typing display i (disp i). GDB will

answer with:

1: i = 1

This means our statement got assigned the ID 1, and that i had the value 1. If we

continue again GDB will print something similar each time:

 Continuing.

 Breakpoint 1, main () at debug1.c:41

 1: i = 2

If we in the future don’t want to see the statement anymore we can type undisplay 1

(und 1) (where 1 is the ID from before).

If we continue to step through the loop with continue we will see that index 5 is never

assigned a value, and this is why we crash. We can now quit GDB with the command

quit (q) and solve the program.

Assignment: Implement a solution the problem found above.

There are other ways to step through the code that doesn’t involve setting breakpoints

and letting the program execute to them. Try playing around with the step (s),

next (n), and finish (fin) commands.

Lastly it’s worth pointing out that you usually don’t have to restart GDB if you have

made changes to the code. Simply compile the program in a separate terminal, and

then tell GDB to rerun (run / r) the program and it will notice that the program

changed, and will try to keep any breakpoints. Sometimes it doesn’t work though, and

will sadly crash because of this, so keep expectations reasonable.

3.3 Program 2: debug2.c
Like before, you can compile the program with make debug2 , and run it with

./debug2 . You should see that the program prints a list of numbers, and then crash

with the message Segmentation fault again.

Like before we can debug the program with GDB. Run GDB on the file as before, and

run the program until you get it to crash. You should see something similar as Figure 5.

10 / 20

TDDE47/TDDE68 Lab A

Figure 5 — Result of running debug2

Here we can see that GDB prints out the parameters to print_numbers , which can be

useful. Like before we can print the value of i with print i :

$1 = 0

We can also check the values inside of numbers . If we do that we get something

similar (the address is probably different):

Cannot access memory at address 0x7ffff7fc9fc0

11 / 20

TDDE47/TDDE68 Lab A

This indicates that the pointer is pointing to invalid memory. The question is where did

this pointer originate from? With the command backtrace (bt) we can have GDB

print out a stack trace:

 #0 0x0000555555555332 in print_numbers (numbers=0x7ffff7fc9fc0, count=12)

 at debug2.c:40

 #1 0x00005555555553a0 in print_with_header (header=0x555555556032

 "Second time:", numbers=0x7ffff7fc9fc0, count=12) at debug2.c:51

 #2 0x0000555555555406 in main () at debug2.c:62

Here we see a numbered list of stack frames. Right now we are in frame number 0,

since we are in the print_numbers function. It was called by the code in frame number

1, within print_with_header . This was in turn called by main . We can jump to earlier

frames with the command frame (f). If we jump to frame 1 (frame 1 or f 1) GDB

will remind us where we are:

 #1 0x00005555555553a0 in print_with_header (header=0x555555556032

 "Second time:", numbers=0x7ffff7fc9fc0, count=12) at debug2.c:51

Here we can see that numbers is a parameter to print_with_header , and the only

thing done to numbers is that is passed along as an argument to print_numbers ;

we can also verify that it contains the same pointer value that we saw earlier, so the

problem is most likely not here. If we go back to frame 2 (frame 2):

 #2 0x0000555555555406 in main () at debug2.c:62

Here we can see that it is the same numbers that was sent to both calls to

print_with_header . We know from before that the first call worked, so what happened

between those calls? If we place a breakpoint on line 59 (the line with the first call to

print_with_header), with break 59 , and run the program again with run .

Now we can see what happens with the variable numbers when the code is run. Since

we will want to check it all the time we can tell GDB to display numbers to continually

print the address. To also show what it contains we can also run display numbers[0] .

Right now GDB should print out something similar to:

 1: numbers = (int *) 0x7ffff7fc9fc0

 2: numbers[0] = 299

We can step forward in the program with next (n). When we get to the line

printf("\n"); we get the following from GDB (remember to press CTRL+L if the TUI

breaks):

 1: numbers = (int *) 0x7ffff7fc9fc0

 2: numbers[0] = <error: Cannot access memory at address 0x7ffff7fc9fc0>

This is interesting. The address is the same, but we can no longer read the first ele

ment. Something happened to it within print_with_header ! We restart the program

with run to get back to our breakpoint and step into the call instead with step (s).

GDB will tell us that we are inside a different function. Since we are inside a different

function we will need to retell it to display our variables. We should see the same thing

as before (but probably a different random number).

12 / 20

TDDE47/TDDE68 Lab A

 1: numbers = (int *) 0x7ffff7fc9fc0

 2: numbers[0] = 299

We can now step through print_with_header with next (n). To avoid having to

type next over and over, we can enter it once, and then press just enter to rerun the

last command.

When stepping through the function we notice that the printout of numbers[0] is

correct until we hit the free call. Here is our problem!

Assignment: Now it’s up to you to solve the problem in a reasonable way. Consider

what mistake the programmer made in this case made.

3.4 Program 3: debug3.c
Compile the program and run it and you should see the message

Strings in C are fun! and then a crash with Segmentation fault again. Like before,

run the program in GDB with gdb -tui ./debug3 and run it with run . This time

however we don’t get a line in our source code, and instead we just get:

 Program received signal SIGSEGV, Segmentation fault.

 __strlen_avx2 () at ../sysdeps/x86_64/multiarch/strlen-avx2.S:141

 ../sysdeps/x86_64/multiarch/strlen-avx2.S: No such file or directory.

It seems that the function __strlen_avx2 (or similar, depends on the system) crashed

when it tried to execute. This happens to be a implementation of the strlen function

in the standard library, it’s used to calculate the length of a C-string. GDB can’t find any

source code for the function, which is missing in the upper window. All this obviously

means we have found a bug in the standard library and we should go about patching it

and rebuild it on our machine. Or more likely it’s the way we have used the function that

is wrong. So let’s check our own code before we start patching the standard library.

We can again use backtrace (bt) to check how we got here:

 #0 __strlen_avx2 () at ../sysdeps/x86_64/multiarch/strlen-avx2.S:141

 #1 0x00007ffff7df1d15 in __vfprintf_internal (s=0x7ffff7f666a0

 <_IO_2_1_stdout_>, format=0x555555556028 "Copy: %s\n",

 ap=ap@entry=0x7fffffffd5c0, mode_flags=mode_flags@entry=0) at

 vfprintf-internal.c:1688

 #2 0x00007ffff7ddad3f in __printf (format=<optimized out>) at printf.c:33

 #3 0x00005555555552ca in main () at debug3.c:38

We again get our stack frames. Remember that 0 is our current frame where we

crashed. In this case the stack trace isn’t that long, but a fairly reasonable strategy is

to start from the bottom (#3 in this case) and go up until you find a function call that

you don’t recognize as yours. We will immediately see that from main in debug3.c:38

we made a call to __printf , so already we have gone outside of code we control.

An observation that can be relevant later in Pintos is that the parameter to frame

number 2 (__printf just says <optimized out> . This happens occasionally when

optimizations are involved. The compiler made the decision that a value of a certain

variable wasn’t needed in the code, and because of this GDB can’t show it. This can

also happen with the print and display commands.

13 / 20

TDDE47/TDDE68 Lab A

If we move back to frame 4 (frame 4) we can see that we crashed on the line trying

to print the value of copy , which would indicate that there is something wrong with

that variable. Inspecting it with print we get the following:

 $2 = 0x7ffff7fc9fe0 "Strings in C are fun!

 \314\314\314\314\314\314\314\314\314\314", <incomplete sequence \314>

GDB has tried to be kind and viewed the variable as a C-string. We can also see that

the beginning of the string looks reasonable, but we get a bunch of garbage values at

the end. This means that copy is not a valid C-string, since we are missing an ending

NULL character (just the value 0). This means that strlen (called in printf) will not

be able to calculate the length of the ‘’string’‘, since it doesn’t know when to stop, and

crashed as it started to read memory it shouldn’t. Analyzing the code in main further

shows that copy is a result of the call to my_strdup , so our investigation should

continue there.

Assignment: Solve the problem in a reasonable way. It might be worth thinking about

what the result from strlen actually is.

14 / 20

TDDE47/TDDE68 Lab A

4 Assignment B: Writing C and wrangling pointers

This section aims to give you some hands on experience writing C code, working

with pointers and managing memory, something that will be important once you start

working on Pintos. The assignment is to implement a singly linked list in C. You are

given some skeleton code in pintos/standalone/slist to get you started.

4.1 Reading material
To help you get started with the C programming language, here are some useful

sources:

• Slides from C lecture

• Introduction to Concurrent Programming in C Chapter 2

• C reference (C99)

4.2 Requirements
The following functions need to be defined (already declared in list.h):

 bool is_empty(struct list_item const *root);

 int get(struct list_item const *root, int idx);

 void append(struct list_item *root, int x);

 void prepend(struct list_item *root, int x);

 void input_sorted(struct list_item *root, int x);

 void print(struct list_item *root);

 void clear(struct list_item *root);

To build your solution, run make in the pintos/standalone/slist directory.

Note: The given code in main.c includes a sentinel node (the root Node), this node

should not be considered to be a part of the list, and is just there hold on to the list. This

makes it possible to avoid certain edge cases and should help you keep the solution

simple. In other words, a call to print with just the given root node should result in

nothing being printed.

You need to keep the following in mind as you implement your solution:

• The nodes in the list are dynamically allocated and freed once they are not

needed.

• You need to write a test program that tests all the functions (main.c)

• If we clear a list we should be able to use it again

• No memory leaks

Use: valgrind --tool=memcheck --leak-check=yes ./main to check for memory

leaks. Feel free to use GDB to debug problems you might run into.

Important! Treat WARNINGS in Valgrind as ERRORS. You should for example not

have invalid writes or reads.

4.3 Optional challenge
As mentioned above, the given code uses a sentinel node to avoid certain edge cases.

15 / 20

https://gitlab.liu.se/filst04/concurrency-book/-/jobs/artifacts/master/browse?job=documentation
https://en.cppreference.com/w/c.html

TDDE47/TDDE68 Lab A

If you want to practice your pointer knowledge further, implement the list without this

solution. You will want to look into using double pointers.

5 Assignment C: Debugging Pintos

This section aim to give you the tools to start working in and debugging Pintos. It will

also give you a short introduction to the project structure.

5.1 Reading material
Below you have some reading material from Stanford (upstream Pintos). Please do

remember that you are taking a course at LiU, and any instruction given in the below

documentation should be ignored, our instructions take precedence. These links

should be treated only as documentation, i.e. ignore any statements like “You will

implement this is project 1”.

• Stanford Pintos: Appendix E: Debugging Tools Backtraces and GDB

• Stanford Pintos: Source Tree Overview

5.2 Building and running Pintos
As you probably have noticed, the Pintos project consists of several different direc

tories. There are a couple you can ignore for now, since we will focus on the userprog

and threads directories in this lab.

To compile Pintos, you should navigate to the pintos/userprog directory, and run the

command make -j8 . The -j8 flag is just there to speed up compilation by telling

make to use several threads.

We will also need some applications to run, so from pintos/userprog , run the

command make -j8 -C ../examples to build the example programs available. The

resulting files will be put in pintos/examples . You are free and even encouraged to

read through the example files as you feel necessary.

Now that we have both Pintos and some example programs compiled and ready, let’s

run Pintos for the first time. If you inspect the file pintos/examples/noop.c you will

find some documentation at the top of the file on how to run it. Follow those instruc

tions and you should be able to have Pintos running. It’s not going to do much, but

we can use this to verify our setup. After about 5 seconds Pintos should terminate if

you followed the instructions, otherwise, just press CTRL+C to terminate the process.

Your result should be similar to Figure 6. Anything before the line Boot complete.

you can ignore, it’s just noise.

16 / 20

https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_10.html#SEC145
https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_1.html#SEC3

TDDE47/TDDE68 Lab A

Figure 6 — Result of running noop

5.3 Debugging tools in Pintos
As you can read in Stanford Pintos, Appendix E, there are several options available to

you when it comes to debugging in Pintos. Here we will walk you through the ones we

think will be the most important for you.

The debug(...) macro

As you can see in Figure 6, there are lines like

main#1: process_execute("binary -s 17") ENTERED , these are the result of calls to

the predefined debug(...) macro in Pintos. It works just like printf(...) , in fact it

17 / 20

TDDE47/TDDE68 Lab A

really only is a printf call prepending the #-sign to whatever is going to be printed.

If you want to add any of your own debug-printouts, use the debug macro as defined

in pintos/lib/debug.h (just #include <debug.h>). The reason to use it is that later

in the lab series you will be running a test suite that tries to match the output from

Pintos against what it expects to find, and if anything extra is found it will fail the test.

The backtrace tool

Something that you will probably run into while developing Pintos is the backtrace,

also knows as the stack trace. To experiment with this, run noop again, but this time

change the last ‘binary’ to for example ‘binar’ to make it not find the program. This will

cause Pintos to print out a backtrace. The result might look something like Figure 7.

Figure 7 — Result of trying to run ‘binar’

Below the Kernel PANIC at ... line, there is a line like backtrace 0xc002... that

is of interest to you. If you copy that entire line, from backtrace up to and including

18 / 20

TDDE47/TDDE68 Lab A

the . and paste it into a terminal, you will get something that should be familiar to

you; it looks like the result of running backtrace in GDB, because it pretty much is

the same thing! Reading the resulting printout should help you start understand why,

or rather from what function Pintos crashed.

There is one more thing that can be worth considering in the PANIC printout, what fault

was triggered. In this case we panicked because of a Page-Fault Exception with the

message: Page fault at 0: not present error reading page in kernel context.

Assignment: From reading the backtrace, figure out what function caused Pintos to

panic.

GDB and Pintos

We can of course run Pintos through GDB. To do this you will need 2 terminals

open, both standing in the pintos/userprog directory. In one of the terminals, run

pintos --gdb --filesys-size=2 ... run 'binar -s 17' , so replace the --T 5 flag

with --gdb , this will cause Pintos to boot up in debug mode, waiting for a GDB session

to connect and take over execution control.

In the other terminal, run the command pintos-gdb build/kernel.o , this will start

GDB, load a couple of macros, and make it ready to debug a Pintos instance. First

you need to connect to a Pintos instance though, and this is easiest done by typing

debugpintos and pressing enter.

Note: There might be issues with this if you are working through ThinLinc, read the

Appendix E: GDB: about setting the GDB_PORT variable. If you are working on an

physical computer it shouldn’t happen, unless you left some Pintos instance running.

See the next note.

Note: Sometimes, by sheer luck (or lack thereof), the Pintos process can completely

hang after working with it through GDB, and you will not be able to terminate it with

CTRL+C . To solve this you can run the command pkill qemu in a terminal to kill any

Pintos process on the system.

Note: The GDB TUI is still available, you will just have to enable it after starting GDB.

It should work well enough, but usability may vary.

At this stage you should be sitting in a fairly normal GDB session, with a printout similar

to 0x0000fff0 in ?? () . You can set breakpoints as usual, and you can let Pintos

run with the command continue (c). If you do this now, Pintos will crash again like

before and detach from the GDB session, without you able to debug anything and you

will have to redo the previous steps. Let’s start with adding a breakpoint at the function

you figured out in the backtrace assignment. Reminder: break function_name to set

a breakpoint. As long as the function name is unique GDB should find it.

After you’ve set the breakpoint, you can let Pintos continue (c), and use next and/

or step to step through the code. By doing this you should be able to figure out what

specific line is causing the page fault. Remainder, if you aren’t using the TUI you can

19 / 20

TDDE47/TDDE68 Lab A

use list in GDB to get a printout of the code in the vicinity of the GDB marker. Or

open the file in question in your favorite editor.

Assignment: Once you have a theory about what specific operation is causing the

page fault, by inspecting variables and looking at the exception message, figure out

a solution to not have the page fault happen and implement it. You may want to

study the struct thread in threads/thread.h , and the start_process() function

in userprog/process.c . The solution should not be more than 1-2 lines of code.

Note: Once you get started working on Pintos properly, you will find that you are

unable to step through the code of the programs you run within Pintos (like noop).

This is expected behaviour since pintos-gdb is debugging the OS code, and can’t

quite handle debugging separate code in a different program outside of Pintos. This

should not present any issues though, since the example programs provided by us

should not include bugs (the programs in Assignment A were buggy on purpose, they

don’t count).

Reading the code

One very important aspect in this lab series is to read code and documentation to

build your own understanding of what is going on, reason about why certain solutions

were implemented instead of others and so on. Probably the most important tool you

will need to use is “Read the code, and start to reason about it”. We do not expect

you to read and understand the entire Pintos project, but we do expect you to read

and study the functions and structures that is in direct contact with your solutions.

We also expect you to understand the code that you add, or otherwise work towards

understanding it!

6 Demonstration

To demonstrate this lab, you will need to be able to:

• Explain the issues in Assignment A and how you solved them. Think about the

mistakes the original programmer made.

• Explain the pointer manipulations done in Assignment B and show that there isn’t

a potential memory leak in your list.

• Explain the problem in Assignment C and your solution for it.

20 / 20

	1 Introduction
	1.1 Goal
	1.2 Prerequisites

	2 Project repository setup
	2.1 Forking Pintos
	2.2 Setting up the PATH

	3 Assignment A: Reading C and GDB debugging
	3.1 Reading material
	3.2 Program 1: debug1.c
	3.3 Program 2: debug2.c
	3.4 Program 3: debug3.c

	4 Assignment B: Writing C and wrangling pointers
	4.1 Reading material
	4.2 Requirements
	4.3 Optional challenge

	5 Assignment C: Debugging Pintos
	5.1 Reading material
	5.2 Building and running Pintos
	5.3 Debugging tools in Pintos
	 The debug(...) macro
	 The backtrace tool
	 GDB and Pintos
	 Reading the code

	6 Demonstration

