LINKOPINGS UNIVERSITET

TDDE47/TDDE68:
Concurrent programming

and Operating Systems
Lab A: C, GDB, and Pintos

2026-01-15

Dag Jonsson
IDA/SaS

TDDE47/TDDE68 Lab A

1 Introduction

1.1 Goal
This lab has the following goals:

« Setup the project repository

- Practice using GDB to debug

- Practice programming in C

- Learn some tools to debug Pintos

As part of item 3 above you will be implementing a simple linked list in C, both to help
you get started writing C code, but also practice on using pointers. Debugging with
GDB is to help you debug problems further in the lab series.

Time estimate is roughly 4 hours if you already have an idea of how pointers work, 6
hours if not. The assignment should be seen as an introduction to C, GDB, and Pintos,
other concepts shouldn’t be new to you.

And we want to address the length of this instruction, the majority of the text is just to
read and following along with. We do not expect you to become experts at using GDB,
or writing C code, but there is quite a lot to discuss and explain. About 3-5 pages are
just pictures.

1.2 Prerequisites

To be able to work on these assignments you will need working knowledge on how
to use a Linux shell (bash), and working with git. If you need to refresh your memory,
check back on the material in your previous courses. A useful tutorial for git can be
found here: https://learngitbranching.js.org

It is highly recommended to configure your gitlab.liu.se account to use SSH keys, see
the documentation: https://docs.gitlab.com/user/ssh/

2 Project repository setup

In this section the goal is to create your own copy of the Pintos repository that you will
work on during this lab series.

2.1 Forking Pintos
You do not have to demonstrate anything for this section.

there, press the “Fork” button in the top right. Here you can fill out the information
as you please. Suggestion is to name the project according to the course code. Before
you create the fork, you should check that the following is set:

- Branches: You only need to fork ‘main’

- Visibility should be set to private

Start by navigating to the original repository: https://gitlab.liu.se/cpos/pintos Once

See Figure 1 for an example.

2/20

https://learngitbranching.js.org
https://docs.gitlab.com/user/ssh/
https://gitlab.liu.se/cpos/pintos

TDDE47/TDDE68 Lab A

Figure 1 — Example fork page
Project name
87-klaar36
, €moji, or und
Project URL Project slug

https://gitlab.liu.se/ dagjo87

Project description (optional)

Branches to include

All branches

© Only the default branch main

Visibility level (2)

part of a group, be granted to mem of the group.

Fork project Cancel

Once you have entered the requested information, press “Fork project”.

Once the repository is forked, invite your lab partner as owner, and your lab assistant
as reporter. See the list below for a list of LiU-ids.

List of assistants for 2026:

< Amin Bajand: mohba27
Animesh Thakur: anith60
Arvid Ramsberg: arvra591
- Dag Jonsson: dagjo87
Masoud Sadrnezhaad: jjssa24
- Maté Foldiak: matfo50

Once you have your repository set up in Gitlab, clone it to your computer. We will be
referring to the clone of the repo as pintos/ in future instructions.

2.2 Setting up the PATH
To be able to run Pintos, you need to modify your PATH variable. The easiest way to
do this is the following steps: Note: Only needs to be done once per student.

1. Navigate to the pintos/utils directory in aterminal
2. Run the following command in the terminal:

echo "export PATH=$(pwd) :\${PATH:" >> ~/.bashrc; source ~/.bashrc

3/20

TDDE47/TDDE68 Lab A

This will add a line to your ~/.bashrc , updating your PATH variable to include the
pintos/utils directory. The source is justto reload the file you just modified so the
changes are immediate.

If you are using a different shell than what is default on the school machines, we
expect you to figure out the differences.

3 Assignment A: Reading C and GDB debugging

The goal of this section is to help you familiarize yourself with C, with a focus on
debugging using GDB. To keep it simple, this will be done outside of Pintos, which
means you will be running GDB normally. You will use GDB in Pintos later in this lab.

In the directory pintos/standalone/gdb you will find three C-programs: debugil.c ,
debug2.c , and debug3.c . These programs contains errors that will cause the pro-
grams to crash when run. Your assignment is to find the problems using GDB, and then
fix the errors.

Note: In these programs we have supplied our own malloc and free functions to
make the programs crash faster when there are memory errors to make the debugging
abitsimpler. This does mean that similar problems made later in Pintos may not cause
a crash immediately, but rather later when you are working on new unrelated code.

3.1 Reading material
- GDB Documentation - Use as reference
- Sample session page - Sample session that may be helpful to get started

Some useful GDB commands to know:
e print var -printsinformation about the variable var .
e print xvar - printsinformation about the dereferenced pointer var .
- run -runthe program until either a problem occurs, a breakpoint occurs, or the
program finishes.
- continue - Continue running after execution stopped, for example after hitting a
breakpoint.
- break main - set a breakpoint at the start of the main function
« backtrace - print information about the call stack. Useful when an error has
occurred and you want to know how the program ended up where it is.
step - Step to the next line of code. If the next line is a function call, will step into
that function.
- next - Step to the next line in the current function. Will skip over any function
calls.
- finish - Step to the end of the current function.
e 1list - printthe source code around where the marker is.

For the instructions below, you should follow along in your GDB sessions.

4/20

https://sourceware.org/gdb/current/onlinedocs/gdb.html/
https://sourceware.org/gdb/current/onlinedocs/gdb.html/Sample-Session.html#Sample-Session

TDDE47/TDDE68 Lab A

3.2 Program 1: debugil.c

Compile the program with the command make debugl . You can then run
the program like ./debugli . You will notice that it crashes with a
Segmentation fault (core dumped) message. This means the program tried to access
memory that for some reason was not valid.

To get started debugging with GDB, you can run the following: gdb -tui ./debugl .
The -tui flags means it willdisplay the code in what GDB calls the Text User Interface.
If you don’t supply the flag and want to enable the TUI after the fact, you can write
tui enable within GDB, or by pressing CTRL+X , followed by CTRL+A . When you have
started GDB you will see something similar to Figure 2.

Figure 2 — Example GDB startup

values

// This 1s a normal array ¢ "5
*contents = malloc () * values);

s to integ
*) * values);

/ Fill with data:

(i i < values; i++) {
contents[
data[i1] = &contents[i];

lues; i++) {

printf(sd: Ssd\n", 1, value);

}

free(data);
free(contents);

exec No process (src) In:
Copyright (C) 2024 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <
his is free software: you are free to change and redistribute it.
here is NO WARRANTY, to the extent permitted by law.
ype "show copying" and "show warranty" for details.
his GDB was configured as "x86_64-suse-linux".

2 "show configuration" for configuration details.

" bug reporting instructions, please see:

Find the GDB manual and other documentation resources online at:

For help, type "help".

ype "apropos word" to search for commands related to "word"...
Reading symbols from

(gdb)

5/20

TDDE47/TDDE68 Lab A

If your terminal is small you may see a message that says the follow-
ing: Type <RET> for more, g to quit, c to continue without paging . This happens
when GDB tries to print more text than fits in the bottom screen. Simple press ¢ and
press enter to get to the prompt (gdb) as in the picture. If you want to avoid this in
the future, make your terminal windows larger.

As you can see in the picture the interface consists of two parts. The upper part shows
the source code for the program. GDB will point out what parts are currently running,
what breakpoints are set and a couple of other things. Since the program hasn’t
started executing yet it doesn’t show too much of interest right now.

The bottom part consists of a “terminal” where you can enter commands to GDB,
and where GDB will answer with information about the program. The prompt (gdb)
means that GDB is ready and is waiting for commands. If you turn off the TUI this
terminal will be the only thing shown.

Itis worth pointing out a couple of things about the TUI. In the picture above the upper
part is marked with a colored frame (yours should be blue, the picture shows a green).
This meansi itis in focus. If you press the arrow buttons you will scroll the code view. If
you press CTRL+X followed by a press of 0, the frame will disappear. This means the
“terminal” inthe bottom is in focus, and the arrows buttons will traverse the command
history (like in the normal terminal). If you are familiar with Emacs you might notice
that CTRL+X, 0 is the same command to switch window in Emacs. Several simple
commands in Emacs works the same in GDB.

Sometimes the TUI “breaks”. This can happen if the program you are debugging prints
to standard out, and “prints over” things that GDB handles. This can easily be fixed by
pressing CTRL+L , this will force GDB to redraw everything properly. In short, if GDB
starts to look weird, press CTRL+L , it can’t hurt!

Now you should be ready to start debugging. Execute the program by typing the
command run and press enter. It’s worth noting that almost all commands in GDB
can be shortened, as long as GDB can figure out what you mean it will usually do the
right thing. As an example, you can shorten run tojust r instead. In these instruc-
tions we will give the long commands, followed by the shorthand in parenthesis when
relevant.

When you have typed run (r) and pressed enter GDB will let the program execute.
Inthis case the program will print a few lines and then crash, like before. On my system
it looks like Figure 3.

(Exactly what is printed and how differs between systems and configurations, if I'm
not explaining or pointing out specific lines it means they are not important)

6/20

TDDE47/TDDE68 Lab A

Figure 3 — GDB TUI “breaking”

*contents = malloc(() * values);
s to in

*) * values);

(i LT values; i++) {
contents[i] i * 5;
data[i] = &contents[i];

}

/! Pr 1‘_ nt 5 .
(LT values; i++) {
*pointer alil;
value *pointer;
printf("At %d: 3 1", 1, value);

}

free(data);

int value = *pointer;

exec No process (src) In:

License GPLv3+: GNU GPL version 3 or later <

his is free software: you are free to change and redistribute i

here is NO WARRANTY, to the extent permitted by law.

ype "show copying" and "show warranty" for details.
multi-thre Thread Ox7ffff7fab7 (src) In: " . L41 PC: O0x401248|

For help, type "help".

ype "apropos word" to search for commands related to "word"...
Reading symbols from
(gdb) run
Starting program:
[Thread debugging using libthread_db enabled]

sing host libthread_db library "

t 0: O

Program received signal SIGSEGY, Segmentation fault.

in main () at E
Missing separate debuginfos, use: zypper install glibc-debuginfo-2.41-3.1.x86_64
(gdb)

It’s not that bad in this picture, but the TUI has bugged out a bit, (because of the
printout from the program) so I press CTRL+L to redraw it and get result captured in
Figure 4.

7/20

TDDE47/TDDE68 Lab A

Figure 4 — Example of segfault

values =

// This 1s a normal ar C 1 gers
*contents = malloc(() * values);

*) * values);

(i i < values; i++) {
contents[1 i * 5;
data[i] = &contents[i];

values; i++) {

printf("At Sc 1", 1, value);

}

free(data);
free(contents);

multi-thre Thread Ox7ffff7fa67 (src) In: main : 0x401248
his GDB was configured as "x86_64-suse-linux".

ype "show configuration" for configuration details.
For bug reporting instructions, please see:

Find the GDB manual and other documentation resources online at:

For help, type "help".
ype "apropos word" to search for commands related to "word"...
Reading symbols from
(gdb) run
Starting program:
[Thread debugging using libthread_db enabled]
sing host libthread_db library "

Program received signal SIGSEGY, Segmentation fault.

in main () at E
Missing separate debuginfos, use: zypper install glibc-debuginfo-2.41-3.1.x86_64
(gdb)

In the upper part we can see that GDB has marked the line that was execut-
ing when the program crashed. In the bottom part we can see the message
received signal SIGSEGV, Segmentation fault . This is the same information we got
in the terminal previously. The next line tells us that the program crashed on address
0x0000000000401248 . This is not that interesting (we don’t know what is there, it will
also differ between different runs). GDB does however tell you it matches the line 41 in
the file debugl.c ,andthatitisinthe function main .Same informationis also shown
in the upper window.

8/20

TDDE47/TDDE68 Lab A

To start figuring out what went wrong in our program, we can inspect it with the help of
the command print (p). The command will evaluate a C-expression and print the
result. Almost everything that works in C also works in GDB (but not everything). Here
we can inspect the variable i by typing print i (p i). We then get the following:

$1 = 5

Thismeansthat i was5.The $1 = partmeanswecanuse $1 inalaterstatement
if we want to reuse the result (i.e. gdb print $i + 2 gives 7).

Knowing that i was 5 we can now focus on the index 5 in the array. We can again
use print to inspect the program. Either we can do print data[i] , or we realize
that the value we are interested in already exists in the variable pointer fromtheline
before and print the pointer instead. We should then get the following back:

$2 = (int %) Oxcccccccecccecececcce

This means that index 5 in the array (and the pointer) has the value
Oxccccccccccccccce , and the type is int = (pointer to int). Since the program
crashed on the line trying to dereference the pointer we should then suspect that this
pointer is not valid. To confirm this we can try to dereference the pointer with the
following print xpointer (in other words, the statement that we think crashed). We
then get the following:

Cannot access memory at address Oxccccccccccecccccce

This confirms our suspicion that the pointer is invalid. From here we can draw
the conclusion that index 5 in data is incorrect. Next question is why? We can
continue inspecting the program using GDB, by using a breakpoint. We do this by
typing in break (b), and supplying where the put the breakpoint. Either we can
supply a function name (e.g. break main) or a filename and a line number (e.g.
break debugl.c:41).In our case we want to set a breakpoint on line 35, so we type
break debugl.c:35 (or just break 35 since this is the file we can see in the upper
window). We should see a mark (b+) to the left of the line, and get the following
output:

Breakpoint 1 at 0x4011e9: file debugl.c, line 35.

Our breakpoint is in other words number 1. If we later want to disable this breakpoint
we can type disable 1 (dis 1). We can now rerun our program with the command
run (r) as before. GDB will ask you to confirm it’s okay to terminate the currently
running instance, answer yes (y). GDB will restart our program and print the
following:

Breakpoint 1, main () at debugl.c:35

This means the program has stopped at the breakpoint number 1 that we just created.
We can also note that the mark in the upper window now is shown as B+ to indicate
that we have hit that breakpoint at least once. We can again inspect our variables

print i (p i)tocheckthe value of our counter. First time it’s obviously 0. From here

9/20

TDDE47/TDDE68 Lab A

we can ask GDB to continue running the program with continue (c). GDB will then
answer with:

Continuing.
Breakpoint 1, main () at debugl.c:35

This means we have again hit our breakpoint 1. We can verify this by printing the i

variable again, this time showing 1. Since we will want to this several times we can
ask GDB to print it after each command, by typing display i (disp i). GDB will
answer with:

1: 1 =1

This means our statement got assigned the ID 1, and that i had the value 1. If we
continue again GDB will print something similar each time:

Continuing.

Breakpoint 1, main () at debugl.c:41

1: 1 = 2
If we in the future don’t want to see the statement anymore we can type undisplay 1
(und 1) (where 1 is the ID from before).

If we continue to step through the loop with continue we will see thatindex 5 is never
assigned a value, and this is why we crash. We can now quit GDB with the command
quit (q) and solve the program.

Assignment: Implement a solution the problem found above.

There are other ways to step through the code that doesn’t involve setting breakpoints
and letting the program execute to them. Try playing around with the step (s),
next (n),and finish (fin) commands.

Lastly it’s worth pointing out that you usually don’t have to restart GDB if you have
made changes to the code. Simply compile the program in a separate terminal, and
then tell GDB to rerun (run / r) the program and it will notice that the program
changed, and will try to keep any breakpoints. Sometimes it doesn’t work though, and
will sadly crash because of this, so keep expectations reasonable.

3.3 Program 2: debug2.c

Like before, you can compile the program with make debug2 , and run it with
./debug2 . You should see that the program prints a list of numbers, and then crash
with the message Segmentation fault again.

Like before we can debug the program with GDB. Run GDB on the file as before, and
run the program until you get it to crash. You should see something similar as Figure 5.

10/ 20

TDDE47/TDDE68 Lab A

Figure 5 — Result of running debug?2

* (count)
{
srand(time(1)
*result = malloc(() * count);

(i=0; 1< count; i++)
result[i] = rand() % ,

result;

count)

(i ; 1 < count; i++) {

int number = nu H

i, number);

a header.
*header, *numbers, count)

- printf("
printf("

print_numbers(numbers, count);
free(numbers);

(
count =

1 Ox40127f
his GDB was configured as "x86_64-suse-linux".
> "show configuration" for configuration details.
= bug reporting instructions, please see:

Find the GDB manual and other documentation resources online at:

For help, type "help".

ype "apropos word" to search for commands related to "word"...
Reading symbols from

(gdb) run
Starting program:

[Thread debugging using libthread_db enabled]

sing host libthread_db library "

print_nun (), =12) at 3
Missing se ate debuginfos, use: zypper install glibc-debuginfo-2.41-3.1.x86_64
(gdb)

Here we can see that GDB prints out the parameters to print_numbers , which can be
useful. Like before we can print the value of i with print i :

We can also check the values inside of numbers . If we do that we get something
similar (the address is probably different):

Cannot access memory at address Ox7ffff7fc9fcO

11/ 20

TDDE47/TDDE68 Lab A

This indicates that the pointer is pointing to invalid memory. The question is where did
this pointer originate from? With the command backtrace (bt) we can have GDB
print out a stack trace:

#0 0Ox0000555555555332 in print_numbers (numbers=0x7ffff7fc9fcO, count=12)
at debug2.c:40

#1 0x00005555555553a0 in print_with_header (header=0x555555556032

"Second time:", numbers=0x7ffff7fc9fcO, count=12) at debug2.c:51

#2 0Ox0000555555555406 in main () at debug2.c:62

Here we see a numbered list of stack frames. Right now we are in frame number O,
sinceweareinthe print_numbers function.Itwas called bythe codeinframe number
1, within print_with_header . This wasinturn called by main . We can jump to earlier
frames with the command frame (£).Ifwejumptoframe1(frame 1 or f 1) GDB
will remind us where we are:

#1 0x00005555555553a0 in print_with_header (header=0x555555556032
"Second time:", numbers=0x7ffff7fc9fcO, count=12) at debug2.c:51

Here we can see that numbers is a parameter to print_with_header , and the only
thing done to numbers is that is passed along as an argument to print_numbers ;
we can also verify that it contains the same pointer value that we saw earlier, so the
problem is most likely not here. If we go back to frame 2 (frame 2):

#2 0Ox0000555555555406 in main () at debug2.c:62

Here we can see that it is the same numbers that was sent to both calls to
print_with_header . We know from before that the first call worked, so what happened
between those calls? If we place a breakpoint on line 59 (the line with the first call to
print_with_header), with break 59 , and run the program again with run .

Now we can see what happens with the variable numbers when the code is run. Since
we will want to check it all the time we can tell GDB to display numbers tocontinually
print the address. To also show what it contains we can also run display numbers[0] .
Right now GDB should print out something similar to:

1: numbers = (int %) Ox7ffff7fc9fcO
2: numbers[0] = 299

We can step forward in the program with next (n). When we get to the line
printf("\n"); we get the following from GDB (remember to press CTRL+L if the TUI
breaks):

1: numbers = (int %) Ox7fff£7fc9fcO
2: numbers[0] = <error: Cannot access memory at address Ox7ffff7fc9fc0O>

This is interesting. The address is the same, but we can no longer read the first ele-
ment. Something happened to it within print_with_header ! We restart the program
with run to get back to our breakpoint and step into the call instead with step (s).
GDB will tell us that we are inside a different function. Since we are inside a different
function we will need to retell it to display our variables. We should see the same thing
as before (but probably a different random number).

12 /20

TDDE47/TDDE68 Lab A

1: numbers = (int %) Ox7ffff7fc9fcO
2: numbers[0] = 299

We can now step through print_with_header with next (n). To avoid having to
type next over and over, we can enter it once, and then press just enter to rerun the
last command.

When stepping through the function we notice that the printout of numbers[0] is
correct until we hit the free call. Here is our problem!

Assignment: Now it’s up to you to solve the problem in a reasonable way. Consider
what mistake the programmer made in this case made.

3.4 Program 3: debug3.c
Compile the program and run it and you should see the message
Strings in C are fun! andthenacrash with Segmentation fault again. Like before,
run the program in GDB with gdb -tui ./debug3 and run it with run . This time
however we don’t get a line in our source code, and instead we just get:

Program received signal SIGSEGV, Segmentation fault.

__strlen_avx2 () at ../sysdeps/x86_64/multiarch/strlen-avx2.5:141
../sysdeps/x86_64/multiarch/strlen-avx2.S: No such file or directory.

It seems that the function __strlen_avx2 (orsimilar, dependsonthe system)crashed
when it tried to execute. This happens to be aimplementation of the strlen function
in the standard library, it’s used to calculate the length of a C-string. GDB can’t find any
source code for the function, which is missing in the upper window. All this obviously
means we have found a bug in the standard library and we should go about patching it
and rebuild it on our machine. Or more likely it’s the way we have used the function that
is wrong. So let’s check our own code before we start patching the standard library.
We can again use backtrace (bt)tocheck how we got here:
#0 __strlen_avx2 () at ../sysdeps/x86_64/multiarch/strlen-avx2.5:141
#1 0x00007ffff7df1d15 in __viprintf_internal (s=0x7ffff7f666a0
<_10_2_1_stdout_>, format=0x555555556028 "Copy: %s\n",
ap=ap@entry=0x7fffffffd5c0, mode_flags=mode_flags@entry=0) at
viprintf-internal.c:1688
#2 0x00007ffff7ddad3f in __printf (format=<optimized out>) at printf.c:33
#3 0Ox00005555555552ca in main () at debug3.c:38

We again get our stack frames. Remember that O is our current frame where we
crashed. In this case the stack trace isn’t that long, but a fairly reasonable strategy is
to start from the bottom (#3 in this case) and go up until you find a function call that
youdon’t recognize as yours. We willimmediately see that from main in debug3.c:38
we made a callto __printf , so already we have gone outside of code we control.

An observation that can be relevant later in Pintos is that the parameter to frame
number 2 (__printf just says <optimized out> . This happens occasionally when
optimizations are involved. The compiler made the decision that a value of a certain
variable wasn’t needed in the code, and because of this GDB can’t show it. This can
also happen with the print and display commands.

13/20

TDDE47/TDDE68 Lab A

If we move back to frame 4 (frame 4) we can see that we crashed on the line trying
to print the value of copy , which would indicate that there is something wrong with
that variable. Inspecting it with print we get the following:

$2 = Ox7ffff7fc9fe® "Strings in C are fun!
\314\314\314\314\314\314\314\314\314\314", <incomplete sequence \314>

GDB has tried to be kind and viewed the variable as a C-string. We can also see that
the beginning of the string looks reasonable, but we get a bunch of garbage values at
the end. This means that copy is not a valid C-string, since we are missing an ending
NULL character (just the value 0). This means that strlen (calledin printf) will not
be able to calculate the length of the “string’, since it doesn’t know when to stop, and
crashed as it started to read memory it shouldn’t. Analyzing the code in main further
shows that copy is a result of the call to my_strdup , so our investigation should
continue there.

Assignment: Solve the problem in a reasonable way. It might be worth thinking about
what the result from strlen actuallyis.

14/ 20

TDDE47/TDDE68 Lab A

4 Assignment B: Writing C and wrangling pointers

This section aims to give you some hands on experience writing C code, working
with pointers and managing memory, something that will be important once you start
working on Pintos. The assignment is to implement a singly linked list in C. You are
given some skeleton code in pintos/standalone/slist to getyou started.

4.1 Reading material
To help you get started with the C programming language, here are some useful
sources:

- Slides from C lecture

 Introduction to Concurrent Programming in C Chapter 2

» Creference (C99)

4.2 Requirements
The following functions need to be defined (already declared in 1ist.h):
bool is_empty(struct list_item const *xroot);
int get(struct list_item const xroot, int idx);
void append(struct list_item xroot, int x);
void prepend(struct list_item xroot, int x);
void input_sorted(struct list_item =*root, int x);

void print(struct list_item =*root);
void clear(struct list_item *root);

To build your solution, run make inthe pintos/standalone/slist directory.

Note: The given code in main.c includes a sentinel node (the root Node), this node
should not be considered to be a part of the list, and is just there hold on to the list. This
makes it possible to avoid certain edge cases and should help you keep the solution
simple. In other words, a call to print with just the given root node should result in
nothing being printed.

You need to keep the following in mind as you implement your solution:
- The nodes in the list are dynamically allocated and freed once they are not
needed.
 You need to write a test program that tests all the functions (main.c)
- If we clear a list we should be able to use it again
« No memory leaks

Use: valgrind --tool=memcheck --leak-check=yes ./main to check for memory
leaks. Feel free to use GDB to debug problems you might run into.

Important! Treat WARNINGS in Valgrind as ERRORS. You should for example not
have invalid writes or reads.

4.3 Optional challenge

As mentioned above, the given code uses a sentinel node to avoid certain edge cases.

15/ 20

https://gitlab.liu.se/filst04/concurrency-book/-/jobs/artifacts/master/browse?job=documentation
https://en.cppreference.com/w/c.html

TDDE47/TDDE68 Lab A

If you want to practice your pointer knowledge further, implement the list without this
solution. You will want to look into using double pointers.

5 Assignment C: Debugging Pintos

This section aim to give you the tools to start working in and debugging Pintos. It will
also give you a short introduction to the project structure.

5.1 Reading material
Below you have some reading material from Stanford (upstream Pintos). Please do
remember that you are taking a course at LiU, and any instruction given in the below
documentation should be ignored, our instructions take precedence. These links
should be treated only as documentation, i.e. ignore any statements like “You will
implement this is project 1”.

- Stanford Pintos: Appendix E: Debugging Tools Backtraces and GDB
« Stanford Pintos: Source Tree Overview

5.2 Building and running Pintos

As you probably have noticed, the Pintos project consists of several different direc-
tories. There are a couple you can ignore for now, since we will focus on the userprog
and threads directories in this lab.

To compile Pintos, you should navigate to the pintos/userprog directory, and runthe
command make -j8 . The -j8 flag is just there to speed up compilation by telling
make to use several threads.

We will also need some applications to run, so from pintos/userprog , run the
command make -j8 -C ../examples to build the example programs available. The
resulting files will be put in pintos/examples . You are free and even encouraged to
read through the example files as you feel necessary.

Now that we have both Pintos and some example programs compiled and ready, let’s
run Pintos for the first time. If you inspect the file pintos/examples/noop.c you will
find some documentation at the top of the file on how to run it. Follow those instruc-
tions and you should be able to have Pintos running. It’s not going to do much, but
we can use this to verify our setup. After about 5 seconds Pintos should terminate if
you followed the instructions, otherwise, just press CTRL+C to terminate the process.
Your result should be similar to Figure 6. Anything before the line Boot complete.
you can ignore, it’s just noise.

16/ 20

https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_10.html#SEC145
https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_1.html#SEC3

TDDE47/TDDE68 Lab A

Figure 6 — Result of running noop

SeaBIOS (version rel-1.16.3-2-gcl3ff2cd-prebuilt.qemu.org)
Booting from Hard Disk...
PPiilloo hhddaal
1
LLooaaddiinngg
Kernel command line: -f -q extract run 'binary -s 17'
Pintos booting with 3,968 kB RAM...
367 pages available in kernel pool.
367 pages available in user pool.
main#l: thread_create("idle", ...) RETURNS 2
Calibrating timer... 728,064,000 loops/s.
ide@: unexpected interrupt
hda: 5,040 sectors (2 MB), model "QMEEOO1l", serial "QEMU HARDDISK"
hdal: 175 sectors (87 kB), Pintos 0S kernel (20)
hda2: 4,096 sectors (2 MB), Pintos file system (21)
hda3: 89 sectors (4ud kB), Pintos scratch (22)
idel: unexpected interrupt
filesys: using hda2
scratch: using hda3
Formatting file system...done.
Boot complete.
Extracting ustar archive from scratch device into file system...
Putting 'binary' into the file system...
Erasing ustar archive...
Executing 'binary -s 17':
main#l: process_execute("binary -s 17") ENTERED
main#l: thread_create("binary -s 17", ...) RETURNS 3
main#l: process_execute("binary -s 17") RETURNS 3
main#l: process_wait(3) ENTERED
binary#3: start_process("binary -s 17") ENTERED
binary#3: start_process(...): load returned 1
binary#3: start_process("binary -s 17") DONE
system call!
binary#3: process_exit() ENTERED
binary: exit(-1073515896)
binary#3: process_exit() DONE with status -1873515896

TIMEOUT after 5 seconds of host CPU time

5.3 Debugging tools in Pintos

As you can read in Stanford Pintos, Appendix E, there are several options available to
you when it comes to debugging in Pintos. Here we will walk you through the ones we
think will be the most important for you.

The debug(...) macro

As you can see in Figure 6, there are lines like
main#tl: process_execute("binary -s 17") ENTERED , these are the result of calls to
the predefined debug(...) macro in Pintos. It works just like printf(...) ,infactit

17/ 20

TDDE47/TDDE68 Lab A

really only is a printf call prepending the #-sign to whatever is going to be printed.
If you want to add any of your own debug-printouts, use the debug macro as defined
in pintos/lib/debug.h (just #include <debug.h>). The reason to use it is that later
in the lab series you will be running a test suite that tries to match the output from
Pintos against what it expects to find, and if anything extra is found it will fail the test.

The backtrace tool

Something that you will probably run into while developing Pintos is the backtrace,
also knows as the stack trace. To experiment with this, run noop again, but this time
change the last ‘binary’ to for example ‘binar’ to make it not find the program. This will
cause Pintos to print out a backtrace. The result might look something like Figure 7.

Figure 7 — Result of trying to run ‘binar’

SeaBIOS (version rel-1.16.3-2-gcl3ff2cd-prebuilt.qemu.org)
Booting from Hard Disk...

PPiilloo hhddaal

1

LLooaaddiinngg

Hernel command line: —f —q extract run 'binar -s 17'

Pintos booting with 3,968 kB RAM...

367 pages available in kernel pool.

367 pages available in user pool.

main#l: thread_create("idle", ...) RETURNS 2

Calibrating timer... 723, 968,000 loops/s.

ide®: unexpected interrupt

hda: 5,000 sectors (2 MB), model "QMBBEO1", serial "QEMU HARDDISK"
hdal: 175 sectors (87 kB), Pintos 0S kernel (28)

hda2: 4,096 sectors (2 MB), Pintos file system (21)

hda3: 89 sectors (4d kB), Pintos scratch (22)

idel: unexpected interrupt

filesys: using hda2

scratch: using hda3

Formatting file system...done.

Boot complete.

Extracting ustar archive from scratch device into file system...
Putting 'binary' into the file system...

Erasing ustar archive...

Executing 'binar -s 17':

main#l: process_execute("binar -s 17") ENTERED

main#l: thread_create("binar -s 17", ...) RETURNS 3

main#l: process_execute("binar -s 17") RETURNS 3

main#l: process_wait(3) ENTERED

binar#3: start_process("binar -s 17") ENTERED

load: binar: open failed

binar#3: start_process(...): load returned 0

binar#3: start_process("binar -s 17") DONE

Page fault at @: not present error reading page in kernel context.
Interrupt Ox@e (#PF Page—Fault Exception) at eip=0xc002a5f3
cr2=00000000 error=00000000

2ax=00000000 ebx=0PEEOEE3 ecx=0000RERT edx=cPlEOEE8
esi=c0108000 edi=c0109000 esp=ffffff00 ebp=c0169{30
cs=0008 ds=0010 es=0010 ss=0010

Kernel PANIC at ../../userprog/exception.c:96 in kill(): Kernel bug - unexpected interrupt in kernel
backtrace 9xc0028Uea 0xc002bOdc OxcBB2b17a OxcBB21aSb Bxc0021c27 OxcOO2a5f3 0xcOO21lac OxcBO2a95d OxcPB21207.
The ‘backtrace' program can make call stacks useful.

Read "Backtraces" in the "Debugging Tools" chapter

of the Pintos documentation for more information.

Simply copy-paste the backtrace command line above.

Timer: 442 ticks

Thread: 5 idle ticks, 426 kernel ticks, 11 user ticks

hda2 (filesys): 43 reads, 182 writes

hda3 (scratch): 88 reads, 2 writes

Console: 1967 characters output

Keyboard: © keys pressed

Exception: 1 page faults

Powering off...

Below the Kernel PANIC at ... line, there is a line like backtrace 0xc002... that
is of interest to you. If you copy that entire line, from backtrace up to and including

18/ 20

TDDE47/TDDE68 Lab A

the . and paste it into a terminal, you will get something that should be familiar to
you; it looks like the result of running backtrace in GDB, because it pretty much is
the same thing! Reading the resulting printout should help you start understand why,
or rather from what function Pintos crashed.

There is one more thing that can be worth considering in the PANIC printout, what fault
was triggered. In this case we panicked because of a Page-Fault Exception with the
message: Page fault at 0: not present error reading page in kernel context.

Assignment: From reading the backtrace, figure out what function caused Pintos to
panic.

GDB and Pintos

We can of course run Pintos through GDB. To do this you will need 2 terminals
open, both standing in the pintos/userprog directory. In one of the terminals, run

pintos --gdb --filesys-size=2 ... run 'binar -s 17' , so replace the --T 5 flag
with --gdb , this will cause Pintos to boot up in debug mode, waiting for a GDB session
to connect and take over execution control.

In the other terminal, run the command pintos-gdb build/kernel.o , this will start
GDB, load a couple of macros, and make it ready to debug a Pintos instance. First
you need to connect to a Pintos instance though, and this is easiest done by typing
debugpintos and pressing enter.

Note: There might be issues with this if you are working through ThinLinc, read the
Appendix E: GDB: about setting the GDB_PORT variable. If you are working on an
physical computer it shouldn’t happen, unless you left some Pintos instance running.
See the next note.

Note: Sometimes, by sheer luck (or lack thereof), the Pintos process can completely
hang after working with it through GDB, and you will not be able to terminate it with
CTRL+C . To solve this you can run the command pkill gemu in a terminal to kill any
Pintos process on the system.

Note: The GDB TUI is still available, you will just have to enable it after starting GDB.
It should work well enough, but usability may vary.

At this stage you should be sitting in a fairly normal GDB session, with a printout similar
to ox0000fff0 in ?? () . You can set breakpoints as usual, and you can let Pintos
run with the command continue (c¢). If you do this now, Pintos will crash again like
before and detach from the GDB session, without you able to debug anything and you
will have to redo the previous steps. Let’s start with adding a breakpoint at the function
you figured out in the backtrace assignment. Reminder: break function_name to set
a breakpoint. As long as the function name is unique GDB should find it.

After you’ve set the breakpoint, you can let Pintos continue (¢),anduse next and/
or step tostep through the code. By doing this you should be able to figure out what
specific line is causing the page fault. Remainder, if you aren’t using the TUI you can

19/ 20

TDDE47/TDDE68 Lab A

use 1list in GDB to get a printout of the code in the vicinity of the GDB marker. Or
open the file in question in your favorite editor.

Assignment: Once you have a theory about what specific operation is causing the
page fault, by inspecting variables and looking at the exception message, figure out
a solution to not have the page fault happen and implement it. You may want to
study the struct thread in threads/thread.h , and the start_process() function
in userprog/process.c . The solution should not be more than 1-2 lines of code.

Note: Once you get started working on Pintos properly, you will find that you are
unable to step through the code of the programs you run within Pintos (like noop).
This is expected behaviour since pintos-gdb is debugging the OS code, and can’t
quite handle debugging separate code in a different program outside of Pintos. This
should not present any issues though, since the example programs provided by us
should not include bugs (the programs in Assignment A were buggy on purpose, they
don’t count).

Reading the code

One very important aspect in this lab series is to read code and documentation to
build your own understanding of what is going on, reason about why certain solutions
were implemented instead of others and so on. Probably the most important tool you
will need to use is “Read the code, and start to reason about it”. We do not expect
you to read and understand the entire Pintos project, but we do expect you to read
and study the functions and structures that is in direct contact with your solutions.
We also expect you to understand the code that you add, or otherwise work towards
understanding it!

6 Demonstration

To demonstrate this lab, you will need to be able to:
- Explain the issues in Assignment A and how you solved them. Think about the
mistakes the original programmer made.
- Explain the pointer manipulations done in Assignment B and show that there isn’t
a potential memory leak in your list.
- Explain the problem in Assignment C and your solution for it.

20/ 20

	1 Introduction
	1.1 Goal
	1.2 Prerequisites

	2 Project repository setup
	2.1 Forking Pintos
	2.2 Setting up the PATH

	3 Assignment A: Reading C and GDB debugging
	3.1 Reading material
	3.2 Program 1: debug1.c
	3.3 Program 2: debug2.c
	3.4 Program 3: debug3.c

	4 Assignment B: Writing C and wrangling pointers
	4.1 Reading material
	4.2 Requirements
	4.3 Optional challenge

	5 Assignment C: Debugging Pintos
	5.1 Reading material
	5.2 Building and running Pintos
	5.3 Debugging tools in Pintos
	 The debug(...) macro
	 The backtrace tool
	 GDB and Pintos
	 Reading the code

	6 Demonstration

