
TDDE47/TDDE68
Lab 6: File system

Dag Jönsson

January 16, 2025

1 Goal
The goal of this assignment is to learn how to organize concurrent accesses by
multiple programs to the file system such that you preserve the data consistency
during read/write operations and do not corrupt the file system structure.

2 Overview
This assignment covers:

• Synchronization of files: concurrent access to the files in the file system
with read/write

• Synchronization of the file system: modification of the existing structure
with remove/create and access with open/close

2.1 User Programs
In the previous assignments (Labs 4-5), you implemented synchronization of
several user programs, however, the synchronization of files and the file sys-
tem was out of scope. In this assignment, you are supposed to implement the
readers-writers synchronization algorithm for performing reading and writing
operations on several files by several programs. Each file can be open by several
programs and even by the same program several times. Since the user programs
can concurrently modify not only files but the file system itself, you need to
synchronize the corresponding system calls (remove/create and open/close)
to preserve consistency of the file system.

2.2 System Calls to Provide Access to Files and the File
System

You will need to provide synchronization to the following system calls imple-
mented in the previous labs:

1

Lab 6: File system TDDE47/TDDE68

• read - reads from a file or the console (the keyboard).

• write - writes to a file or the console (the monitor).

• open - opens a file.

• close - closes an open file.

• create - creates a new file.

• seek - sets position in a file for read and write system calls.

• tell - returns the position in a file.

• filesize - returns the file size.

• remove - removes a file from the file system.

All these system calls will allow to perform the majority of file operations.
Note that the file size is still considered to be fixed in this lab for the sake of
simplicity.

3 Preparations
Pintos File System is a Unix-like file system, which is close to one described with
the Virtual File System (VFS) interface. So, read Chapter 15.5 "The Virtual
File System" of the course book. Pintos uses the same concept of inodes, open
files, superblocks and dentry objects. The two last ones correspond to disk and
directory in Pintos.

The synchronization of concurrent access to files (reading/writing) is one of
the basic issues in operating system design. Usually, it is called "readers-writers
problem". The problem with the possible solutions is described in Chapter 7.1.2
The Readers-Writers Problem" of the course book.

The directory is a special file, which contains file names and file locations on
the disk. In other words, it associates the file name with the actual file placement
on the disk. Since the kernel and multiple user programs can access the directory
concurrently (while creating, removing and opening files) it also needs to be
synchronized. Moreover, the operating system keeps track of currently free disk
sectors. Creation and removal of files change the map of free disk sectors, which
also requires synchronization.

4 Preparatory Questions
Before you begin doing your lab assignment, you have to answer the following
set of questions to ensure that you are ready to continue:

• One may synchronize access to files by locking the whole filesystem while
reading/writing. Think about why it is not a good idea.

Page 2

Lab 6: File system TDDE47/TDDE68

• What is the readers/writers problem? Which modifications of readers-
writers synchronization algorithm exist? Find pseudo code for the algo-
rithm that prioritizes readers.

• Think of a scenario where the concurrent access to a file system with no
synchronization causes a problem such as inconsistency or corruption of
the file system.

• What is the difference between the inode and the file object?

• What is the difference between the inode and the dir object?

• Consider the following set of actions, which are provided in the following
chronological order. What will student.txt contain?

Process A: create(student.txt, 1000)
Process A: fd = open(student.txt)
Process B: remove(student.txt)
Process C: create(student.txt, 1000)
Process C: fd = open(student.txt)
Process C: write(fd, "AAA", 3)
Process A: write(fd, "BBB", 3)
Process C: close(fd)
Process A: close(fd)

4.1 Source Code
You will need to use the functions and the structures provided in filesys/. So,
clear understanding of what those functions are doing is essential for completing
this lab assignment.
Implementation of the Pintos File System is already done in the following set
of files:
filesys/file.[h|c] - operations on files. A file object represents an open
file. Read the description and understand the major steps at least of the fol-
lowing functions: file_open, file_read, file_read_at, file_write, file_write_at,
file_length, file_seek, file_tell, and file_close.

filesys/filesys.[h|c] - operations on the file system. Read the description
and understand the major steps at least of the following functions: filesys_open,
filesys_create, and filesys_remove.

filesys/directory.[h|c] - operations on directories. It is required to have
some understanding of the functions dir_open_root, dir_lookup, dir_close,
dir_remove and dir_add in directory.c that are called from filesys_open, filesys_create
and filesys_remove. You should have a clear picture of how the file entry is
added to and removed from the directory.

Page 3

Lab 6: File system TDDE47/TDDE68

filesys/inode.[h|c] - the most important part of the implementation related
to the file system. An inode object represents an individual file. Understand
when and why the open_cnt counter (property of inode structure) is increased
and decreased in inode_open and inode_close. When we want to delete the
inode, it is first marked as "to be deleted" with inode_remove and then it is
deleted in inode_close when open_cnt becomes 0. The inode functions are
called by the wrapper functions implemented in filesys/directory.[h|c], filesys/-
file.[h|c], and filesys/filesys.[h|c].

devices/disk.[h|c] - implementation of the low-level access to the disk-drive.
You should not use these functions directly in your code.

filesys/free-map.[h|c] - implementation of the map of free disk sectors.
Read the specification of free_map_allocate and free_map_release (reading
the implementation of these functions is not required).

Before you proceed to the implementation part of this lab assignment, answer
the the following control questions:

• What is the difference between file_open and filesys_open?

• Which functions from inode.c are called when you call filesys_remove,
filesys_open, file_close, file_read, file_write?

• When you remove the file, what is removed first, the file name from the
directory or the file content from the disk? How and when is the file
content removed?

• What happens if you attempt to remove an open file?

• How can you keep track of the position in a file?

• Can you open a file, on which filesys_remove has been called?

• Find where free_map_allocate and free_map_release are used in inode.
c.

• There are few levels where you can add your implementation of the readers-
writers problem: system calls, files, and inodes. Think about advantages
and disadvantages of each approach. Which level is the most appropriate?
Motivate your answer.

• Find the places in the code, where the disk is accessed outside
read/write/open/close/create/remove system calls. Reconsider your
motivation for the previous question.

Page 4

Lab 6: File system TDDE47/TDDE68

5 Assignment in Detail
Synchronize the file system as discussed above.
The main part of this assignment is to extend the following system calls (or
rather, make sure that they are synchronized):

int read (int fd, void *buffer, unsigned size)
Reads size bytes from the file with identifier fd into buffer. Returns the number
of bytes actually read (0 at end of file), or -1 if the file could not be read (due
to a condition other than end of file). Fd 0 reads from the keyboard. Several
readers should be able to read from a file at the same time. However, reading
should be forbidden if the file content is being changed by the writer.

int write (int fd, const void *buffer, unsigned size)
Writes size bytes from buffer to the open file fd. Returns the number of bytes
actually written or -1 if the file could not be written. Writing past end-of-file
would normally extend the file, but the file growth will not be implemented.
When fd=1 then the system call should write to the console. Only one writer
can write to a file at the same time. The writer must not write if at least one
reader is reading from the file.

int open (const char *file)
Opens the file called file. Returns a nonnegative integer handle called a "file
descriptor" (fd), or -1 if the file could not be opened.

Within each process, every call to open returns a unique ID (even for the
same file) and associates a distinct position for reading/writing.

It should not be possible to open the file, on which remove has been called
but the actual deletion has not been done yet (for more details, look into the
description of remove system call). This part of functionality is already imple-
mented in Pintos (look into filesys/inode.[h|c]).

void close (int fd)
Closes file descriptor fd.

void seek (int fd, unsigned position)
Sets the current position in the open file fd to position. If the position exceeds
the file size, it should be set to the end of file.

unsigned tell (int fd)
Returns the current position in the open file fd.

int filesize (int fd)
Returns the file size of the open file fd.

bool create (const char *file, unsigned initial_size)
Creates a new file called file initially initial_size bytes in size. Returns true if

Page 5

Lab 6: File system TDDE47/TDDE68

successful, false otherwise.

bool remove (const char *file_name)
Removes the file with the name file_name. Returns true if successful, false
otherwise.

Note that the open files must not be deleted from the file system before
they are closed. All the processes, which have this file opened when remove is
called, can work with the file as usual until they close it. The operating system
should wait until the file is closed by all processes, which have already opened
it, and only then perform the actual deletion of the file content. In case the
file has to be deleted but the actual deletion is postponed, no process can open
this file. This part of functionality is already implemented in Pintos (look into
filesys/inode.[h|c]).

Hint: Make sure that the relevant synchronization primitives for the readers-
writers problem will be shared among all current and coming open instances of
the particular file.

6 Testing
In order to run the final round of tests you need to do the following:

Remove the comment (’#’) on line 5 in userprog/Make.vars so that tests/klaar
tests/filst tests/filesys/base tests/dagjo will be compiled. These fi-
nal tests will also test some aspects of your solution from earlier labs, so you
might have to go back and fix any problems. Once done, all tests should pass.

Make sure to execute make clean in userprog before running make -j4 check
again.

These test (specifically pfs and recursor) might take some time to run. If you
want to focus on other problems first, you can modify tests/klaar/Make.tests
and remove pfs from the list of TESTS, just remember to add it back once you
are done with the other tests.

For the recursor test, it’s easiest to comment out the tests/dagjo instruction
in userprog/Make.vars.

7 Helpful Information
Code directory: userprog, filesys, devices, threads, lib, lib/kernel
Textbook chapters:

• Chapter 13: File System

Page 6

Lab 6: File system TDDE47/TDDE68

• Chapter 14: Implementing File-Systems

• Chapter 6.2: The Critical-Section Problem

• Chapter 7.1: Classic Problems of Synchronization

• Chapter 15.5 The Virtual File System

Documentation: Documentation related to Project 2

(Always remember that the TDDE47/TDDE68 lab instructions have
higher precedence)

8 Acknowledgement
Parts of this document contains material from the TDIU16 course at LiU, pre-
vious lab instructions found on the course web page, or from previous lab in-
structions written by Felipe Boeira.

Page 7

https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_3.html#SEC32

	Goal
	Overview
	User Programs
	System Calls to Provide Access to Files and the File System

	Preparations
	Preparatory Questions
	Source Code

	Assignment in Detail
	Testing
	Helpful Information
	Acknowledgement

