
TDDE47/TDDE68
Lab 4: exec

Dag Jönsson

February 5, 2024

1 Goal
In the following assignments you are supposed to learn about multiprogram-
ming environment, synchronization between user programs, and setting up the
program stack. The main goal is to understand how important synchronization
is in the multiprogramming environment and implement a set of system calls in
Pintos that allow synchronization between the user programs.

2 Overview
This assignment covers:

• Execution of multiple user programs in Pintos with exec()

• Synchronization

3 Preparatory Questions
Before you begin doing your lab assignment, you have to answer the following
set of questions to ensure that you are ready to continue:

• How are you going to enable communication between the parent and child
processes during startup of the child process?

• What is the information that you will need to include in the data structures
to be shared between parent and child?

• Which synchronization mechanisms can be applied?

1



Lab 4: exec TDDE47/TDDE68

4 User Programs
In the previous assignment (Lab 2), you had only one user program running by
the operating system. In this assignment, you are supposed to implement the
exec() system call so that user programs are able to invoke other programs.
Hence, programs will be allowed to invoke children user programs and, if needed,
may wait for completion of these child programs (the wait() system call will
be implemented in lab 5!). In such a multiprogramming environment, synchro-
nization becomes important since the kernel may access shared data structures
between threads. The implementation of a multiprogramming environment will
be accomplished in this and the next lab.

In Lab 5, you will implement the wait() system call so that parents may
wait until children processes exit to check their return value. In Lab 5 you will
add the structures needed to track the relationship between a parent process
and its children. This will most likely mean you will have to revist your solution
in this lab, so make sure you write your solution in a structured fashion to make
it easier in the future.

Note that in this assignment you are not supposed to implement
synchronized access to the file system!

In this assignment, you will need to implement one new system call, exec().

• exec - Loads a program into memory and executes it in its own thread or
process.

5 Preparation
Read through userprog/process.c and threads/thread.c to make sure you
have an solid understanding of the flow when starting a new process. You need
to have a clear understanding of how the user program is loaded into memory
and how it is then started. You have probably already read through parts of
this code, but repeat it again to make sure you understand what is going on.
A diagram to help you understand the flow of a process creation is depicted in
Figure 1.

The main part of this assignment is to implement the following system call:

pid_t exec (const char *cmd_line)
Runs the executable whose name is given in cmd_line, passing any given argu-
ments, and returns the new process’ program id (pid). Must return pid -1 if
the program cannot load or run for any reason.

Figure 1 depicts the process creation flow in pintos. Note that P represents
the parent and CHILD is the new process being spawned by an exec() call
from the parent. Revisit this diagram if you need to think about when to
initialize data structures or how to share information between the parent and
the child processes.

Page 2



Lab 4: exec TDDE47/TDDE68

Figure 1: Process execution flow

5.1 Assignment in detail
Once you have clearly understood the flow of executing a new process in Pintos,
you must decide what kind of structure you need to create to be able to start,
and get the status of the new process to decide if it was successfully started or
not. Remember to deallocate any allocated memory that isn’t used any longer.
Hints:

• start_process is only called via process_execute, which means you
can change the parameter of start_process to something other than
cmd_line. It still needs to be a void* though. How is this handled
currently with the cmd_line?

• When the parent creates a new child, it is put into the process queue and
the child thread will run start_process() to be initialised. Use synchro-
nisation mechanisms so that the parent waits until its child initialisation
is complete and can check whether it was successful or not.

5.2 Testing
There are two test programs you can use to test your solution, examples/
lab4test1.c and examples/lab4test2.c. Their function is documented at
the top of the respective files.

Page 3



Lab 4: exec TDDE47/TDDE68

6 Helpful Information
Code directory: userprog, threads, lib, lib/kernel
Textbook chapters:

• Chapter 2.3: System Calls

• Chapter 4.6: Threading Issues

• Chapter 6.2: The Critical-Section Problem

• Chapter 9.3: Paging

Documentation: Pintos documentation
(Always remember that the TDDE47/TDDE68 lab instructions have
higher precedence)

7 Acknowledgement
Parts of this document contains material from the TDIU16 course at LiU, pre-
vious lab instructions found on the course web page, or from previous lab in-
structions written by Felipe Boeira.

Page 4

https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_3.html#SEC32

	Goal
	Overview
	Preparatory Questions
	User Programs
	Preparation
	Assignment in detail
	Testing

	Helpful Information
	Acknowledgement

