
TDDE47/TDDE68
Lab 3: Basic Synchronization

Dag Jönsson

January 14, 2024

1 Goal
In this assignment you are supposed to get acquainted with some of the most
important mechanisms of operating systems such as timers, threads, interrupts,
and, last but not least, synchronization primitives. Proper functioning of any
concurrent operating system is simply impossible without them.

2 Overview
This assignment covers:

• Basic interrupt management.

• A first introduction to threads switching.

This lab intends to teach the basics of synchronization, starting from the
thread concurrency which is achieved via thread switching triggered by the timer
interrupt. Pintos uses three synchronization primitives: semaphores, locks and
conditions. All of them are already implemented. You should fully understand
how they work before you start using them.

3 Preparatory questions
Before you begin doing your lab assignment you have to answer on the following
set of questions to ensure that you are ready to continue.

• What is busy waiting? Why should the programmer avoid busy waiting
in a concurrent operating system?

• Explain difference between Yield and Sleep.

• What is the difference between locks and semaphores? (Hint: there are
two main differences). What is a deadlock?

1



Lab 3: Basic Synchronization TDDE47/TDDE68

4 Assignments in detail
4.1 Task
Your task is to re-implement function timer_sleep() which is located in devices/
timer.c. The purpose of this function is to make a calling process delay for a
given time (sleep). The current implementation uses a busy-waiting strategy: it
is calling thread_yield() and checking the current time in a loop until enough
time has gone by. Obviously, this is not acceptable: processor time is a very
valuable resource and must not be wasted in busy waiting.

4.2 Implementation Suggestions
In this part of the lab, you need to re-implement timer_sleep(int64_t ticks).
If the thread calls timer_sleep() then its execution is suspended for (at least)
ticks ticks. In case there are no other running threads (that is, if the system is
idle), then the thread should be awaken after exactly ticks ticks. You should
not preempt other processes if there are any running after the time has passed
by, but rather put our process into the ready-to-run queue and leave the decision
when it should be executed to the scheduler.

Hint: Implement a queue for sleeping processes. You can use either original
list from Pintos distribution (lib/kernel/list.[c|h], well documented in the
source files), or write your own list implementation.

Note, that the argument to timer_sleep is provided in ticks, not in mil-
liseconds. The macro TIMER_FREQ defines how many ticks there are per second
(defined in devices/timer.h).

In your implementation you may modify other functions or add your own
code in timer.c and timer.h files. Note, that the functions similar to timer_sleep():

• timer_msleep()

• timer_usleep()

• timer_nsleep()

rely on timer_sleep(), therefore there is no need to modify them. To test
your implementation you may run make -j check from the threads directory.
There are a number of tests:

• alarm-single

• alarm-multiple

• alarm-simultaneous

• alarm-zero

• alarm-negative

Page 2



Lab 3: Basic Synchronization TDDE47/TDDE68

which will test timer_sleep() function in different ways. You may run (and
debug if necessary) one test at a time, e.g.: pintos -- run alarm-simultaneous
Note, that these tests will also pass at the very beginning because the current
implementation of timer_sleep() is correct, although it is using busy waiting.
Hint: If you added code inside "threads" in lab 2, protect it with the following:

1 #i f d e f USERPROG
2 . . YOUR CODE
3 #e n d i f

5 Helpful Information
Code directories: threads, /devices
Textbook chapters:

• Chapter 1.4.3: Timer

• Chapter 3.2: Process Scheduling

• Chapter 6.2: The Critical-Section Problem

• Chapter 6.6: Semaphores

• Chapter 7.1.1: The Bounded-Buffer Problem

Documentation:
Pintos documentation, and in particular:
Some parts of Project 1 Synchronization
Interrupt Handling (Always remember that the TDDE47/TDDE68 lab
instructions have higher precedence)

6 Acknowledgement
Parts of this document contains material from the TDIU16 course at LiU, pre-
vious lab instructions found on the course web page, or from previous lab in-
structions written by Felipe Boeira.

Page 3

https://www.scs.stanford.edu/24wi-cs212/pintos/pintos.html
https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_2.html#SEC15
https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_6.html#SEC100
https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_6.html#SEC107

	Goal
	Overview
	Preparatory questions
	Assignments in detail
	Task
	Implementation Suggestions

	Helpful Information
	Acknowledgement

