
TDDE47/TDDE68
Lab 0: Lists and setup

Dag Jönsson

January 16, 2025

1 Goal
This document describes the course’s first lab, which includes linked lists ma-
nipulation, debugging, and Pintos setup. Completing this lab should give you
the basic knowledge to get started on working on Pintos.

2 Prerequisites
To be able to work on the labs you need working knowledge on how to use the
university’s Linux systems, as well as on how to work with git. If you need
to refresh your memory, check back on the introductionary courses. A useful
tutorial for git can be taken at Learn Git Branching.

3 Overview
This assignment covers:

• Setting up your git project

• Understanding the internals of linked lists (pointers)

• Using GDB to debug C programs (and Pintos)

4 Setup Your Git Project
Create a PRIVATE project at gitlab.liu.se, suppose in this example that
the project path is https://gitlab.liu.se/LIU-ID/PROJECT-NAME.
Important: Untick the checkbox to initialise the repository with a
README. Failure to do this creates a default branch called ’main’.

1

https://learngitbranching.js.org/

Lab 0: Lists and setup TDDE47/TDDE68

Remember to invite your lab partner as at least developer, and your assistant
as at least reporter.

Clone Pintos from our repository using the following command in the termi-
nal:

git clone git@gitlab.liu.se:cpos/pintos.git

or if you don’t have SSH keys configured (highly recommend to fix the SSH
keys):

git clone https://gitlab.liu.se/cpos/pintos

Go to the created directory:

cd pintos

Add a remote repository, the one you created for yourself:

git remote add student git@gitlab.liu.se:LIU-ID/PROJECT-NAME.git

or, again if you don’t have SSH keys configured:

git remote add student https://gitlab.liu.se/LIU-ID/PROJECT-NAME

Push the project to the new remote, only needed to be done once:

git push -u student main
Now you can work with the git project like normal.

5 Linked List Implementation
This excersise aims to give you some hands on experience writing C code, work-
ing with pointers and managing memory, something that will be important once
you start working on Pintos.

Your task is to implement a singly linked list. In the pintos/standalone/
slist directory you are given some skeleton files to get you started.
Using C, implement the following functions (already declared in the list.h
file):

1 /∗ puts x at the end o f the l i s t ∗/
2 void append (s t r u c t l i s t _ i t e m ∗ f i r s t , i n t x) ;
3

4 /∗ puts x at the beg inning o f the l i s t ∗/
5 void prepend (s t r u c t l i s t _ i t e m ∗ f i r s t , i n t x) ;
6

Page 2

Lab 0: Lists and setup TDDE47/TDDE68

7 /∗ input_sorted : f i n d the f i r s t element in the l i s t l a r g e r than x
and input x r i g h t b e f o r e that element ∗/

8 void input_sorted (s t r u c t l i s t _ i t e m ∗ f i r s t , i n t x) ;
9

10 /∗ p r i n t s a l l e lements in the l i s t ∗/
11 void p r i n t (s t r u c t l i s t _ i t e m ∗ f i r s t) ;
12

13 /∗ f r e e everyth ing dynamical ly a l l o c a t e d ∗/
14 void c l e a r (s t r u c t l i s t _ i t e m ∗ f i r s t) ;
15

To build your solution, run the command make in the pintos/standalone/
slist directory.

Your solution should dynamically allocate the necessary memory with malloc,
and of course free it when it’s no longer used. You will also need to write your
own tests to validate that your solution works as intended. Make sure you cover
all the relevant cases. Another requirement is that your solution doesn’t leak
any memory, to check this you can use Valgrind:
valgrind --tool=memcheck --leak-check=yes ./main

Important! Treat WARNINGS in Valgrind as ERRORS. You
should not have invalid writes or reads, for example.

Optional challenge
In the skeleton files the list is set up with a sentinel starting node that is a known
value that is not a part of the actual list. If you want to challenge yourself, im-
plement the list without such a node. You will want to look into double pointers.

Demonstration: At the end of the entire lab assignment, you will be asked
some questions on how you implemented and tested your solution.

6 GDB
This excersise aims to give you a short introduction to GDB. This will be done
outside of Pintos as to make it easier for you to focus on GDB. After the com-
pletion of this excersise you should have basic knowledge on how to use GDB
to find and correct bugs in your code.
The GDB manual can be found here: GDB Documentation. Use it as a ref-
erence when debugging. To get started you should look through the Sample
session page.

In the pintos/standalone/gdb directory there are three C-programs, debug1.
c, debug2.c, and debug3.c. These programs contains bugs that will cause the
program to crash. You task is to find these with the help of GDB, and then
correct them in a reasonable way.

Page 3

https://sourceware.org/gdb/current/onlinedocs/gdb.html/
https://sourceware.org/gdb/current/onlinedocs/gdb.html/Sample-Session.html#Sample-Session
https://sourceware.org/gdb/current/onlinedocs/gdb.html/Sample-Session.html#Sample-Session

Lab 0: Lists and setup TDDE47/TDDE68

Demonstration: At the end of the entire lab, you will be asked some ques-
tions related to the errors in these programs, and how you found them.

Note: The versions of malloc and free used in these programs are designed
to crash faster than the normal versions. This does mean that if you later make
the same errors in your Pintos code you might not crash during your initial
testing, but rather after adding unrelated code.

Some useful GDB commands to know:

• print var - prints information about the variable var.

• print *var - prints information about the derefenced pointer var.

• run - run the program until either a problem occurs, a breakpoint occurs,
or the program finishes.

• continue - Continue running after execution stopped.

• break main - set a breakpoint at the start of the main function

• backtrace - print information about the call stack. Useful when an error
has occured and you want to know how the program ended up where it is.

• step - Step to the next line of code. If the next line is a function call, will
step into that function.

• next - Step to the next line in the current function. Will skip over any
function calls.

• finish - Step to the end of the current function.

• list - print the source code around where the marker is.

6.1 debug1.c

Navigate to the pintos/standalone/gdb directory and compile debug1.c with
the command make. Running this program will result in a Segmentation fault
(core dumped) message. To get started debugging the issue, execute the com-
mand gdb ./debug1. You should be greeted by the GDB shell.
Once GDB has started up, you can give it the command run to run the pro-
gram, and GDB will run the debug1 program and stop once it runs into the
SEGFAULT.

Use the print command in GDB to figure out what the issue is. Start with
examining what the variable i is, and how it relates to the array we are iterating
over.
Once you figured out what the problem is, implement a fix and recompile and
check if it worked.

Page 4

Lab 0: Lists and setup TDDE47/TDDE68

6.2 debug2.c and debug3.c

Repeat the process for the two other files, compile and run them under the
debugger, figure out the problem and implement a fix.

7 Pintos Setup
Add the pintos/utils directory to your PATH environment variable. This can
be done with the following if you are currently located in the pintos/utils di-
rectory: (You only need to do this once!)
echo "export PATH=\${PATH}:$(pwd)">> ~/.bashrc

After that is done, execute the following to reload your .bashrc for your
current session, you do not need to do this again in the future.
source ~/.bashrc

7.1 Compilation
To compile Pintos for the first time, change your current directory to the threads
directory (cd pintos/threads) and issue the command:

make -j
The "-j" flag tells make to use several threads to compile, speeding up the pro-
cess.

Once compiled, run the following command:
pintos run alarm-single

Your terminal should output something similar to the following:

SeaBIOS (version 1.13.0 -1 ubuntu1 .1)
Booting from Hard Disk ...
PPiiLLoo hhddaa1
1
LLooaaddiinngg
Kernel command line: run alarm - single
Pintos booting with 3 ,968 kB RAM ...
367 pages available in kernel pool.
367 pages available in user pool.
Calibrating timer ... 392 ,704 ,000 loops/s.
Boot complete .
Executing ’alarm - single ’:
(alarm - single) begin
(alarm - single) Creating 5 threads to sleep 1 times each.
(alarm - single) Thread 0 sleeps 10 ticks each time ,

Page 5

Lab 0: Lists and setup TDDE47/TDDE68

(alarm - single) thread 1 sleeps 20 ticks each time , and so on.
(alarm - single) If successful , product of iteration count and
(alarm - single) sleep duration will appear in nondescending order.
(alarm - single) thread 0: duration =10, iteration =1, product =10
(alarm - single) thread 1: duration =20, iteration =1, product =20
(alarm - single) thread 2: duration =30, iteration =1, product =30
(alarm - single) thread 3: duration =40, iteration =1, product =40
(alarm - single) thread 4: duration =50, iteration =1, product =50
(alarm - single) end
Execution of ’alarm - single ’ complete .

To quit and go back, press CTRL+C to terminate the pintos process.

8 Pintos GDB debugging
Using a debugger is a useful way to find bugs or learn about programs. In Pin-
tos, you may use GDB as a debugger and issue commands to insert breakpoints
or inspect memory, for example. You may use the Pintos debugging mate-
rial as a reference although other GDB references should work in this context
too. Complete the following task by using GDB:

Move into the directory pintos/examples and compile the programs by is-
suing make -j.

Now, move into the directory pintos/userprog, find the function setup_stack()
in the file userprog/process.c and change (you will fix this back in the next
lab):

*esp = PHYS_BASE; to
*esp = PHYS_BASE - 12;

Compile the code by issuing make -j in that directory.

This should have created the build subdirectory, move into it. Use the fol-
lowing command to create a simulated disk:

pintos-mkdisk filesys.dsk --filesys-size=2

Then, format the disk:

pintos -f -q

Still in the build directory, copy the previously compiled binary printf to
the simulated disk with the folllowing command:

Page 6

https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_10.html
https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_10.html

Lab 0: Lists and setup TDDE47/TDDE68

pintos -p ../../examples/printf -a printf -- -q

The printf program should now be listed when you run:

pintos -q ls

You will start pintos with the GDB flag and tell it to execute the printf pro-
gram with the following command:

pintos --gdb -- run printf

In another shell, move to pintos/userprog/build and execute:

pintos-gdb kernel.o

The GDB shell will be open, execute the following to connect to the VM:

debugpintos

If you looked at the source of the printf program, you noticed it just calls the
printf function and passes a string as the argument. Internally, a wrapper will
push three parameters to the stack to perform a system call: the number of the
system call (you can check the macros in the file pintos/lib/syscall-nr.h),
a file descriptor to print to and a pointer to the string to be printed. Since the
system call implementation is a task for a future lab, we are going to insert a
breakpoint into the kernel handler of system calls. Find it in:
pintos/userprog/syscall.c:

(gdb) break syscall_handler

Breakpoint 1 at 0xc010a800: file ../../userprog/syscall.c, line
18.

Continue the execution until the program finishes or a breakpoint is hit:

(gdb) continue

Continuing.

Breakpoint 1, syscall_handler (f=0xc011ffb0)
at ../../userprog/syscall.c:17

You are now in the GDB shell at the breakpoint that was hit. You may use the
list command to check the source code of the program at the current part that
is being executed. Note that the syscall_handler function receives a struct as

Page 7

Lab 0: Lists and setup TDDE47/TDDE68

parameter, check out the members of the struct with the command:

ptype f

As you can see, the interrupt handler has provided a struct with the regis-
ters and other information from the userspace program. Since the wrapper of
the printf function has pushed the parameters to the stack, we are interested
in the stack pointer to inspect its memory contents:

(gdb) print f->esp

$1 = (void *) 0xbffffed8

Based on the stack pointer, take a look at the memory contents using examine
(short command x). In the following command we are examining five words as
of the address of the stack pointer:

(gdb) x/5w f->esp

0xbffffed8: 9 1 -1073742044 55

0xbffffee8: -1073742072

To print the third parameter (recall it is the pointer to the string), you can
manipulate the esp pointer. Given that each parameter is 4 bytes long, issue
the following command to print the address of the third argument:

(gdb) p f->esp+8

$2 = (void *) 0xbffffee0

Use GDB and the information presented to answer the following:

• What name does the syscall number correspond to? (Remeber you can
find the names in pintos/lib/syscall-nr.h.)

• What is the second parameter related to and what does it mean in this
case?

• Use GDB to print the string that the pointer in the third parameter refers
to. Hint: Use the x/s command variant to examine memory and treat it
as a string. You need to dereference the pointer using an asterisk to access
the contents of the memory (just like in C). Since GDB doesn’t know the
data type of the memory location that the pointer points to (it’s a void
pointer), you also need to cast it to a (char **).

Page 8

Lab 0: Lists and setup TDDE47/TDDE68

9 Acknowledgement
Parts of this document contains material from the TDIU16 course at LiU, pre-
vious lab instructions found on the course web page, or from previous lab in-
structions written by Felipe Boeira.

Page 9

	Goal
	Prerequisites
	Overview
	Setup Your Git Project
	Linked List Implementation
	GDB
	debug1.c
	debug2.c and debug3.c

	Pintos Setup
	Compilation

	Pintos GDB debugging
	Acknowledgement

