
TDDB68/TDDE47 - Lab 3

Felipe Boeira

February 2020

1 Goal

In the following assignments you are supposed to learn about multiprogram-
ming environment, synchronization between user programs, and setting up the
program stack. The main goal is to understand how important synchronization
is in the multiprogramming environment and implement a set of system calls in
Pintos that allow synchronization between the user programs.

2 Overview

This assignment covers:

• Execution of multiple user programs in Pintos with exec()

• Tracking of parent and children relationship

3 Preparatory Questions

Before you begin doing your lab assignment, you have to answer the following
set of questions to ensure that you are ready to continue:

• How are you going to track all children of a given parent and the parent
of every children?

• What is the information that you will include in the data structures to be
shared between parent and children?

• Which synchronization mechanisms can be applied?

1



Lab 3 TDDB68/TDDE47

4 User Programs

In the previous assignment (Lab 1), you had only one user program running by
the operating system. In this assignment, you are supposed to implement the
exec() system call so that user programs are able to invoke other programs.
Hence, programs will be allowed to invoke children user programs and, if needed,
may wait for completion of these child programs (the wait() system call will
be implemented in lab 5!). In such a multiprogramming environment, synchro-
nization becomes important since the kernel may access shared data structures
between threads. The implementation of a multiprogramming environment will
be accomplished in this set of labs:

Lab 4 is to implement argument passing such that programs can read com-
mand line arguments. This will teach you how the operating system can pass
arguments to user programs, in particular, how it is solved in 80x86 architecture
by pushing them into the program’s stack.

In Lab 5, you will implement the wait() system call so that parents my
wait until children processes exit to check their return value. In this lab you will
have to use the data structures you define now for parent and children tracking.

Note that in this assignment you are not supposed to implement
synchronized access to the file system!

In this assignment, you will need to implement one new system call and
modify exit() so that it stores the return value of the child (needed later
for wait()) and deallocates your tracking data structure if it is not going to
be used anymore by either the parent or the child (e.g. if one of them is still
executing, then it cannot be deallocated yet).

• exec - Loads a program into memory and executes it in its own thread or
process.

• exit - Terminates a program and deallocates resources occupied by the
program, for example, closes all files opened by the program. You inherit
this system call from earlier labs and extend it.

5 Preparation

In addition to the source code which you have already looked at in the second
lab, you should read and understand the code in userprog/process.c. This
file contains a set of functions that you can use to implement execution of a new
user program. You have to clearly understand how the user program is loaded
into the memory and how it is started. A diagram to help you understanding
the flow of a process creation is depicted in Figure 1.

The main part of this assignment is to implement (extend) the following
system calls:

Page 2



Lab 3 TDDB68/TDDE47

pid t exec (const char *cmd line)
Runs the executable whose name is given in cmd line, passing any given ar-
guments, and returns the new process’ program id (pid). Must return pid -1
if the program cannot load or run for any reason. For now you may ignore the
arguments in cmd line and use only the program name to execute it.

void exit (int status)
Terminates the current user program, returning the exit code status to the
kernel.

Figure 1 depicts the process creation flow in pintos. Note that P represents
the parent and CHILD is the new process being spawned by an exec() call
from the parent. Revisit this diagram if you need to think about when to
initialize data structures or how to share information between the parent and
the child processes.

Figure 1: Process execution flow

5.1 Assignment in detail

Once you have clearly understood the flow of executing a new process in pintos,
you must decide how to create a relationship between parent and children.

Remember:

Page 3



Lab 3 TDDB68/TDDE47

• A parent should have a reference to its children

• Every child should have a pointer to its parent

• You may allocate your data structures when the child is spawned and
deallocate it when both the parent and the child have exited

• When the parent creates a new child, it is put into the process queue
and the child thread will run start process() to be initialised. Use
synchronisation mechanisms so that the parent waits until its child initial-
isation is complete and receives the return value to check whether it was
successful or not

6 Helpful Information

Code directory: src/userprog, src/threads, src/lib, src/lib/kernel
Textbook chapters: Chapter 2.3: System Calls
Chapter 2.4: Types of System Calls
Chapter 4.4: Threading Issues
Chapter 6.2: The Critical-Section Problem
Chapter 8.4: Paging
Documentation: Pintos documentation
(Always remember that the TDDB68 lab instructions always have higher prece-
dence)

7 Acknowledgement

Part of this document contains material from the LiU TDIU16 course and pre-
vious course instructions from the web page.

Page 4

https://web.stanford.edu/class/cs140/projects/pintos/pintos_3.html#SEC32

	Goal
	Overview
	Preparatory Questions
	User Programs
	Preparation
	Assignment in detail

	Helpful Information
	Acknowledgement

