
TDDB68/TDDE47

Lab 0: Lists and setup

Felipe Boeira

January 2023

These lab instructions are partly based on the original Pintos documentation as
well as the instructions developed within the course over several years.

1 Goal

This document describes the course’s first lab, which includes linked lists ma-
nipulation and pintos setup and debugging. The projects are hosted in the
university’s Gitlab environment. If you are not familiar with git, please take
some time to go through it and learn its concepts. A nice tutorial can be taken
at Learn Git Branching.

2 Overview

This assignment covers:

• Setting up the environment

• Understanding the internals of linked lists

• Becoming familiar with Pintos doubly linked lists

• Using GDB to debug Pintos

3 Setup Your Git Project

Create a project at gitlab.liu.se, suppose in this example that the project
path is https://gitlab.liu.se/LIU-ID/PROJECT-NAME. Important:
Untick the checkbox to initialise the repository with a README.

1

https://learngitbranching.js.org/

Lab 0: Lists and setup TDDB68/TDDE47

Clone pintos from our repository using the following command in the termi-
nal:

git clone https://gitlab.liu.se/tddb68/pintos

Go to the created directory:

cd pintos

Add a remote repository, the one you created for yourself:

git remote add lab https://gitlab.liu.se/LIU-ID/PROJECT-NAME

To push changes to your own project, execute once (later you can push using
git push):

git push -u lab master

4 Linked List Implementation

This exercise aims to implement a single linked list and understand how its ma-
nipulation works internally. This will be helpful later when you have to use other
implementations of linked lists. You can create a new directory to store your im-
plementation under the cloned project, for example: ”pintos/singly-linked-list”.
There is another directory already there for the next exercise, don’t mix these
up: ”pintos/pintos-linked-list”. Please use different files for implementing the
functions and for testing the code (you can have a C file only with the main()
function to test the implementation and which includes the header where you
define the linked list functions).

Using C, create a linked list from scratch with the following functions:

1 void append (s t r u c t l i s t i t em ∗ f i r s t , i n t x) ; /∗ puts x at the end
o f the l i s t ∗/

2 void prepend (s t r u c t l i s t i t em ∗ f i r s t , i n t x) ; /∗ puts x at the
beg inning o f the l i s t ∗/

3 void p r i n t (s t r u c t l i s t i t em ∗ f i r s t) ; /∗ p r i n t s a l l e lements in
the l i s t ∗/

4 /∗ i npu t s o r t ed : f i nd the f i r s t element in the l i s t l a r g e r than x
and input x r i gh t be f o r e that element ∗/

5 void i npu t s o r t ed (s t r u c t l i s t i t em ∗ f i r s t , i n t x) ;
6 void c l e a r (s t r u c t l i s t i t em ∗ f i r s t) ; /∗ f r e e everyth ing

dynamical ly a l l o c a t e d ∗/
7

Hint1: You need to use malloc (and free of course) and a struct
list item that contains a pointer to the same struct type (the next element):

Page 2

Lab 0: Lists and setup TDDB68/TDDE47

1 s t r u c t l i s t i t em {
2 i n t va lue ;
3 s t r u c t l i s t i t em ∗ next ;
4 } ;
5

Hint2: Implementing the list will be easier if you make first a static head
element that does not contain any real data. (Because there are fewer exceptions
if you know first is never NULL.) Your main can start like this:

1 i n t main (i n t argc , char ∗∗ argv)
2 {
3 s t r u c t l i s t i t em root ;
4 root . va lue = −1; /∗ This va lue i s always ignored ∗/
5 root . next = NULL;

Write a piece of code that tests your linked list implementation. You should
properly test all the relevant cases including, creation, insertion (all different
types), printing, and clearing. Try several different orders of these functions
(including printing after clearing the list). Use Valgrind to make sure you have
got no memory leaks. You can use the following command:

valgrind --tool=memcheck --leak-check=yes ./your-program

Important! Treat WARNINGS in Valgrind as ERRORS. You should
not have invalid writes or reads, for example.

5 Pintos Linked List

Throughout the labs, the Pintos doubly linked list data structure is used. In
order to become familiar with its implementation, a standalone version has been
included in the pintos repository at:

pintos/pintos-linked-list

Now, read carefully the files list.h and list.c. It is important that
you understand how this list operates in order to use it properly. Use the file
main.c to develop the exercise as this file contains a skeleton of the solution.
The skeleton contains a menu for the program and it consists of a list of students
that can be added, removed and listed. Your task is to implement the following
functions:

1 //This func t i on should f e t ch a student name from the te rmina l input
and add i t to the l i s t (remember to a l l o c a t e memory us ing

mal loc as appropr ia te) .
2 void i n s e r t (s t r u c t l i s t ∗ s t u d e n t l i s t) {
3 }
4

5 //This func t i on should get a student name from the te rmina l input ,
remove i t from the l i s t , and d e a l l o c a t e the appropr ia te memory
(i f i t e x i s t s in the l i s t) .

Page 3

Lab 0: Lists and setup TDDB68/TDDE47

6 void d e l e t e (s t r u c t l i s t ∗ s t u d e n t l i s t) {
7 }
8

9 //This func t i on should p r i n t the e n t i r e l i s t .
10 void l i s t (s t r u c t l i s t ∗ s t u d e n t l i s t) {
11 }
12

13 //This func t i on should c l e a r the l i s t and d e a l l o c a t e the memory f o r
a l l i tems in the l i s t and qu i t the program .

14 void qu i t (s t r u c t l i s t ∗ s t u d e n t l i s t) {
15 }

Hint: Note that a single struct list elem cannot be used across multi-
ple lists, this is a common source of mistakes during the development of pintos
labs.

6 Pintos Setup

Compile the Pintos utilities by going into pintos/src/utils and executing
make, in addition, create a symlink to qemu in that directory and make these
files executable:

ln -s $(which qemu-system-i386) qemu
chmod +x pintos
chmod +x pintos-mkdisk
chmod +x backtrace
chmod +x pintos-gdb

Add the utils directory to your PATH environment variable (this command
assumes you have cloned to your home folder, adjust it accordingly). For con-
venience, you can add this line to your $HOME/.bashrc.

export PATH="${HOME}/pintos/src/utils/:${PATH}/"

Important: Adjust the directory to match your own environment.

6.1 Compilation

To compile Pintos for the first time, change your current directory to the threads
directory (cd pintos/src/threads) and issue the command:

make

Go down to the build directory and start Pintos to see that it runs:

cd build
pintos --qemu -- run alarm-single

Page 4

Lab 0: Lists and setup TDDB68/TDDE47

You should get a new window with an output that ends with something
similar to the following:

p in to s / s r c / threads / bu i ld$ p in to s −−qemu −− run alarm−s i n g l e
Writing command l i n e to /tmp/ t7sIkaPA d . dsk . . .
Kernel command l i n e : run alarm−s i n g l e
Pintos boot ing with 3 ,968 kB RAM. . .
356 pages a v a i l a b l e in ke rne l pool .
356 pages a v a i l a b l e in user pool .
Ca l i b ra t i ng t imer . . . 246 ,988 ,800 loops / s .
Boot complete .
Executing ’ alarm−s i n g l e ’ :
(alarm−s i n g l e) begin
(alarm−s i n g l e) Creat ing 5 threads to s l e e p 1 times each .
(alarm−s i n g l e) Thread 0 s l e e p s 10 t i c k s each time ,
(alarm−s i n g l e) thread 1 s l e e p s 20 t i c k s each time , and so on .
(alarm−s i n g l e) I f s u c c e s s f u l , product o f i t e r a t i o n count and
(alarm−s i n g l e) s l e e p durat ion w i l l appear in nondescending order .
(alarm−s i n g l e) thread 0 : durat ion =10, i t e r a t i o n =1, product=10
(alarm−s i n g l e) thread 1 : durat ion =20, i t e r a t i o n =1, product=20
(alarm−s i n g l e) thread 2 : durat ion =30, i t e r a t i o n =1, product=30
(alarm−s i n g l e) thread 3 : durat ion =40, i t e r a t i o n =1, product=40
(alarm−s i n g l e) thread 4 : durat ion =50, i t e r a t i o n =1, product=50
(alarm−s i n g l e) end
Execution o f ’ alarm−s i n g l e ’ complete .

7 Pintos GDB debugging

Using a debugger is a useful way to find bugs or learn about programs. In Pin-
tos, you may use GDB as a debugger and issue commands to insert breakpoints
or inspect memory, for example. You may use the pintos GDB manual as a
reference although other GDB references should work in this context too. Com-
plete the following task by using GDB:

Move into the directory pintos/src/examples and compile the programs
by issuing make.

Now, move into the directory pintos/src/userprog, find the function setup stack()
in the file userprog/process.c and change (you will fix this back when ar-
gument passing for programs is implemented):

*esp = PHYS BASE; to

*esp = PHYS BASE - 12;

Page 5

https://web.stanford.edu/class/cs140/projects/pintos/pintos_10.html

Lab 0: Lists and setup TDDB68/TDDE47

Compile the code by issuing make in that directory.

This should have created the build subdirectory, move into it. Use the follow-
ing command to create a simulated disk:

pintos-mkdisk fs.dsk 2

Then, format the disk:

pintos --qemu -- -f -q

Still in the build directory, copy the previously compiled binary printf to
the simulated disk with the folllowing command:

pintos --qemu -p ../../examples/printf -a printf -- -q

The printf program should now be listed when you run:

pintos --qemu -- -q ls

You will start pintos with the GDB flag and tell it to execute the printf
program with the following command:

pintos --qemu --gdb -- run printf

In another shell, move to pintos/src/userprog/build and execute:

pintos-gdb kernel.o

The GDB shell will be open, execute:

target remote localhost:1234

If you looked at the source of the printf program, you noticed it just calls the
printf function and passes a string as the argument. Internally, a wrapper will
push three parameters to the stack to perform a system call: the number of the
system call (you can check the macros in the file pintos/src/lib/syscall-nr.h),
a file descriptor to print to and a pointer to the string to be printed. Since the
system call implementation is a task for the next lab, we are going to insert a
breakpoint into the kernel handler of system calls. Find it in:
pintos/src/userprog/syscall.c:

(gdb) break syscall handler

Page 6

Lab 0: Lists and setup TDDB68/TDDE47

Breakpoint 1 at 0xc010a800: file ../../userprog/syscall.c,
line 18.

Continue the execution until the program finishes or a breakpoint is hit:

(gdb) continue

Continuing.

Breakpoint 1, syscall handler (f=0xc011ffb0)
at ../../userprog/syscall.c:17

You are now in the GDB shell at the breakpoint that was hit. You may use the
list command to check the source code of the program at the current part
that is being executed. Note that the syscall handler function receives a
struct as parameter, check out the members of the struct with the command:

ptype f

As you can see, the interrupt handler has provided a struct with the regis-
ters and other information from the userspace program. Since the wrapper of
the printf function has pushed the parameters to the stack, we are interested
in the stack pointer to inspect its memory contents:

(gdb) print f->esp

$1 = (void *) 0xbffffed8

Based on the stack pointer, take a look at the memory contents using examine
(short command x). In the following command we are examining five words as
of the address of the stack pointer:

(gdb) x/5w f->esp

0xbffffed8: 9 1 -1073742044 55

0xbffffee8: -1073742072

To print the third parameter (recall it is the pointer to the string), you can
manipulate the esp pointer. Given that each parameter is 4 bytes long, issue
the following command to print the address of the third argument:

(gdb) p f->esp+8

$2 = (void *) 0xbffffee0

Page 7

Lab 0: Lists and setup TDDB68/TDDE47

Use GDB and the information presented to answer the following:

• What is the macro corresponding to the syscall number in this case?

• What is the second parameter related to and what does it mean in this
case?

• Use GDB to print the string that the pointer in the third parameter refers
to. Hint: Use the x/s command variant to examine memory and treat it
as a string. You need to dereference the pointer using an asterisk to access
the contents of the memory (just like in C). Since GDB doesn’t know the
data type of the memory location that the pointer points to (it’s a void
pointer), you also need to cast it to a (char **).

Page 8

	Goal
	Overview
	Setup Your Git Project
	Linked List Implementation
	Pintos Linked List
	Pintos Setup
	Compilation

	Pintos GDB debugging

