
Student Instructions

These are the student instructions for the TDDE46 lab on REST API evaluation, testing and exploration.

TODO: UPDATE SETUP AND IMAGE FETCHING INSTRUCTIONS. WHERE DO WE STORE IT? LOCAL REGISTRY?

HOW TO AVOID PORT CONFLICTS IF USING SHARED ENVIRONMENT? COPY INSTRUCTIONS FROM DOCKER LAB.

TODO: UPDATE ALL IMAGE VERSION REFERENCES BY SEARCING FOR "VERSION" IN THE DOCUMENT.

1. Introduction

In this lab you w ill be given the opportunity to investigate, evaluate and explore an Authenticator service, w hich exposes a REST API. It is provided as a Docker

image, and through a series of exercises you w ill ref lect on it from multiple perspectives and apply both manual and automated testing to it. Apart from these

instructions, you need a separate Requirements document. This document lists the Authenticator service requirements that you w ill test, and provides a

description of the service and its purpose.

1.1 Prerequisites

To complete this lab, an environment w ith Docker installed and running is required. Apart from that, no experience or in-depth understanding of containerization in

general or Docker in particular is needed; detailed instructions w ill be given for all Docker operations. If you do not have Docker installed, see

https://docs.docker.com/get-started/ to get started.

To build the automated verif ication project you need Maven. If you don't have Maven set up, see https://maven.apache.org/dow nload.html and

https://maven.apache.org/install.html.

Prior to the lab, spend some time reading up on Representational State Transfer (REST) and RESTful API design. There are multiple view s on w hat good RESTful

design looks like, and sampling some of them by simply searching the Internet is a useful exercise. Also take a brief look at the canonical source on REST: Fielding,

R. T., & Taylor, R. N. (2000). Architectural styles and the design of network-based software architectures. You don't need to read the w hole thing, but Section 5 is

useful background reading.

1.2 Preparation

1. Open your favorite shell.

2. Run docker ps to verify that Docker is running. You should see something like this:

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

This tells you that no containers are currently running.

1. Fetch the Authenticator service image: PLACEHOLDER

2. Create a container from the image: docker run -d -p <port>:8080 tdde46/authenticator:VERSION w here <port> is the port you w ish to use on your host

machine. If you're running in your ow n local environment you can use any port number (e.g. 8080), but if you're running in a shared remote environment you

need to select a unique port number to avoild collisions. PLACEHOLDER: EXPLAIN PORT SELECTION SCHEME. You should see something like this:

$ docker run -d -p 8080:8080 tdde46/authenticator:VERSION

03e4aa138d5a45a76839077e47564d0f3000268e83a0e1d99402fd4be24185ef

The -d means detached mode, allow ing you to continue using your shell w hile the container runs in the background. -p <port>:8080 publishes the

container's port 8080 to your host machine's port 8080.

3. Verify that the container is running by running docker ps once more. You should see something like this:

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

03e4aa138d5a tdde46/authenticator:VERSION "/bin/sh -c 'java --…" 34 minutes ago

Up 34 minutes 0.0.0.0:8080->8080/tcp, 8081/tcp frosty_mendeleev

4. Open your favorite brow ser and point to to http://<hostname>:<port>/ping , w here <hostname> is localhost if you're running on a local machine, or the

hostname of the server if you're running in a remote environment. You should get something like {"id":1,"content":"Pong!"} on Content-Type

 application/json . If at f irst you don't get a response, w ait a few more seconds for the service to spin up.

https://docs.docker.com/get-started/
https://maven.apache.org/download.html
https://maven.apache.org/install.html
Azeem Ahmad
Replace VERSION with 1.0.0 or 1.0.0.

5. Now you're all set!

2 Exercises

The exercises are a mix betw een tasks to execute and questions to ref lect on. Completed tasks are show n to and assessed by the lab assistant. For ref lection

exercises, begin by collectively phrasing your thoughts as text, then present the text to your lab assistant and discuss it w ith them. A benchmark to aim for is

approximately 250 w ords per ref lection exercise. If you end up w ith less there's a fair chance you haven't exhausted the subject.

2.1 Service Quality Assessment Task

In the Requirements document you w ill f ind a description of the Authenticator service along w ith its requirements. Read the description and brow se through the

requirements, then explore the REST API of the service. To do this, point your brow ser to http://localhost:8080/swagger . The service exposes an interactive

Sw agger documentation of its API, w hich lets you try out its exposed methods. Go through each of the methods, read its documentation in Sw agger and try it out

for yourself to see w hat kind of responses you get back.

Tip: In the Swagger UI, to find the correct syntax of a request body (e.g. for POSTing to /permissions/create)

you can click "Model" under the Description of the body parameter.

Tip: You can of course access the service using other clients as well. For instance, try using

curl from your shell. Just make sure your request header accepts application/json content,

or you will receive an HTTP 406 code!

Now consider the Authenticator service and its API from the follow ing quality perspectives:

How w ould you judge its usability? Are the methods easy to use and easy to understand? Is the output easy to use and easy to understand? How RESTful is

the service?

How w ould you judge its security? Are there any obvious security concerns w ith this service? If so, how w ould you improve it?

Also consider the Requirements document.

Are the requirements understandable?

Are the requirements comprehensive?

Are the requirements unambiguous?

2.2 Manual Requirement Verification Task

Use the Sw agger UI (or some other client of your choice) to manually verify each of the requirements on the Authenticator service.

2.3 Test Methodology Reflection 1

What are your ref lections on the manual verif ication of the requirements? Is this a reasonable w ay of testing? What are the pros and cons? Some things to

consider:

Are there any particular types of faults that this type of testing might be w ell suited for?

How w ould you judge the upfront investment and effort (CAPEX) required for this type of testing?

How w ould you judge the continual investment and effort over time (OPEX) required for this type of testing?

Assume that your job description w as to run these and similar tests 40 hours a w eek. How w ould you feel about that as an engineer?

2.4 Automated Requirement Verification Task

Use TestNG and RestAssured to create automated test cases verifying each of the requirements on the Authenticator service. You w ill f ind a pre-configured

project w ith a few implemented tests to help you get started in the authenticator-test project, supplied to you along w ith these instructions. You can execute the

tests from inside of your favorite IDE or from your shell using mvn test -Dv=1.0.0 .

2.5 Test Methodology Reflection 2

What are your ref lections on the automated verif ication of the requirements? Did you prefer it to the manual testing? What are the pros and cons in this case?

Some things to consider:

Did you encounter any faults that you didn't identify during manual testing?

Could all requirements be verif ied? Did you achieve a clean mapping of requirements to test cases? Is that desirable? Why, or w hy not?

How w ould you judge the upfront investment and effort (CAPEX) required for this type of testing?

How w ould you judge the continual investment and effort over time (OPEX) required for this type of testing?

Which do you f ind most fun and rew arding - manually performing and repeating these tests, or creating automated test cases to do it for you?

2.6 Non-Functional Requirements Reflection

Review the list of requirements again. Note that there are no non-functional requirements. What is the implication of this? Would it be possible to design a service

that is functionally correct, but that cannot serve its stated purpose due to non-functional aspects? Perhaps that is already the case in the provided

implementation? Recall w hat you have seen of the API and its behavior - is there any behavior you have spotted that might be problematic? If so, w hich of the test

methods you have tried w ould be most likely to uncover it?

Reflect on w hich non-functional requirements might be relevant for the Authenticator service. Which of the test methods you have tried w ould you recommend for

ensuring that the service stays compliant over time w ith these requirements? How w ould you design a process that ensures that the service stays w ithin

acceptable non-functional boundaries throughout its life-cycle?

2.7 Testability Reflection

How w ould you judge the testability of the Authenticator service in general? Is the provided API conducive to manual and/or automated testing?

Requirement 2.4.4 specif ies time intervals w here the validity of a permission is to be queried. What are the implications of this? In particular, think of a non-trivial

softw are project w ith many thousands of automated test cases of services like this one, and think of a continuous delivery scenario w here many new versions

are created every hour. How w ill such time intervals impact the ability to continuously deliver? What might be done differently in the service implementation to

enhance its testability in this regard?

2.8 Requirements Phrasing Reflection

Review the Authenticator service requirements one f inal time. How are the requirements phrased? Are they phrased "positively" or "negatively", in the sense that

they state w hat shall happen or w hat shall not happen? In testing one often speaks of "happy path" testing as opposed to "sad path" testing. What might the

correlation be betw een these types of testing on the one hand, and how the requirements are phrased on the other? How might this affect w hether certain types

of faults go undetected? How might one go about phrasing requirements and implementing tests designed to detect faults rather than verifying assumptions?

