
1 / 26

TDDE45 - Lecture 7: Testability

Adrian Pop and Martin Sjölund

Department of Computer and Information Science
Linköping University

2023-10-03

2 / 26

Part I

Testing

3 / 26

What is testing?

The process that ensures that the code, component, module or application works
according to the requirements. Testing properties:
I Systematic
I Black box
I White box

This course is not a course primarily in Software Testing (TDDD04 – HT1).

4 / 26

Testing Crash Course - Type of Tests

I Unit Tests - specific methods and logic of the code, edge cases
I Feature Tests - tests the functionality of the component (does it meets the

requirements?)
I Integration Tests - tests the entire application end to end
I Performance Tests - tests the efficiency of a piece of code (method or the entire

application)

5 / 26

Testing Crash Course - Vocabulary

I Test doubles - used instead of other objects
I Fakes - objects that have working

implementations.
I Mocks - are objects that have predefined

behavior.
I Stubs - are objects that return predefined

values.

6 / 26

Testing Crash Course - Fakes

Fakes
I objects that have working implementations.
I implement the same interface as a real object but takes shortcuts to improve

performance.
I usually used when we need to test something that depends on an external service

or API and we don’t want to make actual calls to that service.
Example: in memory database.

7 / 26

Testing Crash Course - Mocks

Mocks
I objects that have predefined behavior.
I they register calls they receive, allowing asserts on how we use them in the code.
I they do not have working implementations but instead they have pre-programmed

expectations about how they will be used in the code.
I usually used to test the behaviour of our code rather than its input (calling the

dependencies in the expected way).
Example: object that returns a specific value when called with certain arguments.

8 / 26

Testing Crash Course - Stubs

Stubs
I objects that return predefined values.
I they do not have working implementations.
I not programmed to expect specific calls but they return values when called.
I used to provide the data (hard-coded or dynamically generated) needed for the

code to run.
Example: object returning some predefined data expected from a service.

9 / 26

Testing Crash Course - Choosing the Double

How to choose the test double depending what we are testing. Choose the simplest
that gets the job done.
I Fakes - use when you want to improve performance and lower the resource

consumption.
I Mocks - use when you want to verify the behaviour of the code.
I Stubs - use when you need to provide data for the code or the test to run.

10 / 26

When we design for testability, we use white-box testing

I We write the source code
I We make sure that the code can be tested

11 / 26

Injecting bad behavior into a model

I Testing needs both ☺ and ☹ paths
I How do we test these paths?
I How do we know we have tested all paths?

12 / 26

Automatability

I To which degree can you automate the test?
I How long time does it take to create an automated test?
I How long time does it take to manually test it?

Graphical user interfaces usually have a high cost of automated testing.

13 / 26

Controllability

I Can we control the tested object?
I We might need access to other objects that need to change

14 / 26

Isolateability

I How many other objects are needed to test the object?
I Ideally zero dependencies.

15 / 26

Understandability

I Is the object documented?
I Is the code self-explaining?
I Will the tester be able to find all edge cases?

16 / 26

Homogeneity

I Are all the modules written in the same language?
I Are you using the same framework everywhere?
I The more differences, the more different techniques and testing frameworks you

might need

17 / 26

Observability

I How do we know that the test did what it should?
I Private member variables? Reflections API? Member functions that you can infer

a value from?
I Visible side effects? File was created? Test that. Read its contents.
I Hidden side effects? ☹
I Extend the class with functions keeping track of what you need to test.

18 / 26

Separation of concerns

I More functionality in a class means more things to test.
I Encapsulated classes.

I Modularize the software.
I Can hide implementation details from other functionality.

I A smaller interface means fewer functions you need to test.
I See also: Single Responsibility Principle.

19 / 26

Dependency Injection / Inversion of control
I Allows a way to pass objects (dependencies) to another object
I Helps automatability (makes it easier to construct the tested object’s

dependencies)
I Allows fakes or mocks to be used
I You can inject dependencies that improve observability of the internal state of the

object – you can now access its internal dependency by keeping a pointer to it
public class Injector {

public static void main(String[] args) {
// Build the dependencies first
Service service = new ExampleService();
// Inject the service, constructor style
Client client = new Client(service);
// Use the objects
System.out.println(client.greet());

}
}

20 / 26

Test-driven development (TDD)

I Requires automation
I Requires short development cycles
I Focused on small unit tests – not larger functional tests
I Test code should be larger than the code under test (need to setup fakes, mocks,

etc)
I Still need a testing team to get a different set of eyes
I Many tests; expensive to maintain
I Results in debuggers being less needed

21 / 26

Test-driven development (TDD) Cycle
Write the test

Check if the test fails

 Succeeds; not a good test

Write minimal code

Fails

Test fails

Check if all tests succeed

Test succeeds

Code quality?

All succeed

Correct regressions

Some test failed

Refactor some code

Unsatisfactory

Push code; next task

OK

22 / 26

Behavior-driven development (BDD)
Similar to TDD, but focuses on behavior instead of unit tests. Typically, a DSL is used
to describe the test:
Specification: Stack

When a new stack is created
Then it is empty

When an element is added to the stack
Then that element is at the top of the stack

When a stack has N elements
And element E is on top of the stack
Then a pop operation returns E
And the new size of the stack is N-1

23 / 26

Design for testing (analogy with IC design)

How do you know that hardware is correct?
I It’s black box testing (input/output)
I The underlying source code is available, but not very useful for testing
I Add additional testability features to the integrated circuit
I Test the circuit during manufacturing
I Possibly also supports troubleshooting by consumer via JTAG connector

24 / 26

What you can do today

Use existing development services such as github (or others):
[https://docs.github.com/en/actions/automating-builds-and-tests
I Continuous integration - build and test on various OS and hardware
I Use Test Automation Frameworks and Mock Testing Frameworks

I Selenium, Cypress, Playwright, WebDriverIO, TestCafe, NightwatchJS,
Appium (Mobile), Cucumber (BDD)

I Mockito, EasyMock, WireMock, MockWebServer, JMockit, PowerMock,
I Build for various languages:

I Go, Java (with Ant, Gradle, Maven), .NET
I Node.js (JavaScript/TypeScript)
I Python, Ruby, Swift, PowerShell
I Julia - testing and code coverage
I Xamarin (.NET mobile)

[

25 / 26

Testing OpenModelica
https://openmodelica.org
I For each pull request (PR):

https://github.com/OpenModelica/OpenModelica
I we build it using gcc & clang on Linux (autoconf & cmake)
I we can also build it on Windows [32 and 64 bit] & Mac [x86_64 and M1] when

testing large PRs
I we run 4000+ tests
I we partially test the GUI using Qt testing
I we export models and test that they work with external tools

I Each night we run coverage of 78 Modelica libraries - 16332 models
I https://libraries.openmodelica.org/branches/overview.html

I Each night we build nightly-builds
I various Linux distros (arm, x86_64)
I Windows (32 and 64 bit)
I Mac OS (x86_64, M1)

https://openmodelica.org
https://github.com/OpenModelica/OpenModelica
https://libraries.openmodelica.org/branches/overview.html

26 / 26

www.liu.se

	Testing

