
1 / 29

TDDE45 - Lecture 5: Domain-Specific Languages

Adrian Pop and Martin Sjölund

Department of Computer and Information Science
Linköping University

2023-09-20

2 / 29

Part I

Domain-Specific Languages (DSLs)

3 / 29

Domain-Specific Languages

I Many are similar to classic, general-purpose programming languages (e.g. PHP).
I Examples include Unix shells, SQL, HTML, regular expressions, parser generators,

some XML schemas, and many more.
I Compilers are usually implemented partially using domain-specific languages

(grammars, special languages to describe architectures, etc).
I Why? It is easier to program and maintain such code.

4 / 29

DSLs: Markup Languages
I Markdown (.md) - used on github, gitlab for example
I Wiki - various flavors - used on Wikipedia, Trac, etc
I Doxygen - generate documentation from source code
I Sphinx - generate documentation from reStructuredText (.rst)
I LaTeX (.tex) - used to write articles, books and such

5 / 29

DSLs: Markup Languages - HTML

<!DOCTYPE html>
<html>
<body>

<h1>My first HTML page</h1>

<p>Hello, world!</p>

</body>
</html>

HTML is markup code (some of which is interpreted)

6 / 29

DSLs: Template Languages

<!DOCTYPE html>
<html>
<body>

<h1>My first PHP page</h1>
<?php
echo $_SERVER["REMOTE_ADDR"];
?>
</body>
</html>

PHP code (highlighted)

7 / 29

DSLs: Template Languages

<!DOCTYPE html>
<html>
<body>

<h1>My first PHP page</h1>
<?php
echo $_SERVER["REMOTE_ADDR"];
?>
</body>
</html>

PHP code in-between pieces of code or markup. Typical usage is in web services
(Facebook uses their own language derived from PHP because PHP at the time was

too slow; modern PHP is slightly faster than Facebook’s HHVM).

8 / 29

DSLs: Embedded Scripting Languages
<!DOCTYPE html>
<html>
<body>

<p id="demo"></p>

<script>
document.getElementById("demo").innerHTML = "Hello World!";
</script>

</body>
</html>

JavaScript (JS) is interpreted code that was fast enough to be embedded in
web-browsers back in 1997 (but JS is more like a general-purpose language these days)

9 / 29

DSLs: Shell Scripting Languages

#!/bin/bash

if test -f testsuite/Makefile; then
cd testsuite
for test in *.test; do

grep "status: *correct" "$test"
done

fi

Bash is either an interactive shell or interpreted code suitable for running system
commands

10 / 29

DSLs: Regular expressions

Look for line starting with status: correct
grep "^status: *correct" "$test"
Look for openmodelica.org in the apache2 config
grep -R "openmodelica[.]org" /etc/apache2
Replace all occurrences of http with https in the file
sed -i s,http://,https://,g file
sed -i s/SearchedText/ReplacedText/g file

Regular expressions appear almost everywhere from text editors to the venerable grep
or sed.

11 / 29

DSLs: Build configuration

AC_PREREQ([2.63])
AC_INIT([OMCompiler],[dev],[https://trac.openmodelica.org/OpenModelica],
[openmodelica],[https://openmodelica.org])

AC_LANG([C])
AC_PROG_CC
AC_SEARCH_LIBS(dlopen,dl)
AC_SUBST(EXTRA_LDFLAGS)
...
AC_OUTPUT(Makefile)

autoconf (m4) translates a description of possible build configurations and generates
a shell script (./configure) that configures for example Makefile files.

12 / 29

DSLs: Build systems - make

Example partial Makefile:
Makefile.in
EXTRA_LDFLAGS=@EXTRA_LDFLAGS@

SomeFile.o: SomeCommand.c SomeCommand.h
$(CC) -o $@ -c $< $(CFLAGS)

libSomeLib.so: $(DEPS) SomeFile.o
@rm -f $@
$(CC) -shared -o $@ $(DEPS) SomeFile.o $(LDFLAGS) $(EXTRA_LDFLAGS)

make interprets build dependencies and build rules to run shell commands

13 / 29

DSLs: Images and diagrams
@startuml
abstract class Document;
class MultiFunctionPrinter {

void Print(Document d);
Document Scan();
void Fax(Document d);

}
class BasicPrinter {

void Print(Document d);
}
interface AbstractPrinter {

{abstract} void Print(Document d);
{abstract} Document Scan();
{abstract} void Fax(Document d);

}
note bottom of BasicPrinter : "Needs to add dummy Scan and Fax\nfunctions that are not supported"
AbstractPrinter <|-- BasicPrinter
AbstractPrinter <|-- MultiFunctionPrinter
@enduml

Document;

MultiFunctionPrinter

void Print(Document d);
Document Scan();
void Fax(Document d);

BasicPrinter

void Print(Document d);

AbstractPrinter

void Print(Document d);
Document Scan();
void Fax(Document d);

"Needs to add dummy Scan and Fax
functions that are not supported"

PlantUML syntax for drawing a UML class diagram.

14 / 29

DSLs: Parser Generators (Language Recognition)
(* a simple program syntax in EBNF − Wikipedia *)
program = 'PROGRAM', white_space, identifier, white_space,

'BEGIN', white_space,
{ assignment, ";", white_space },
'END.' ;

identifier = alphabetic_character, { alphabetic_character | digit } ;
number = ["-"], digit, { digit } ;
string = "'" , { all_characters - "'" }, "'" ;
assignment = identifier , ":=" , (number | identifier | string) ;
alphabetic_character = "A" | "B" | "C" | "D" | "E" | "F" | "G"

| "H" | "I" | "J" | "K" | "L" | "M" | "N"
| "O" | "P" | "Q" | "R" | "S" | "T" | "U"
| "V" | "W" | "X" | "Y" | "Z" ;

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
white_space = ? white_space characters ? ;
all_characters = ? all visible characters ? ;

See also courses in Formal Languages (TDDD14, etc) or Compiler Construction
(TDDB44, TDDD55).

15 / 29

DSLs: Parser Generators (Language Recognition): Example

PROGRAM DEMO1
BEGIN
A:=3;
B:=45;
H:=-100023;
C:=A;
D123:=B34A;
BABOON:=GIRAFFE;
TEXT:='Hello world!';

END.
Syntactically correct program according to the grammar on the previous slide.
Note that programs are usually parsed into an abstract syntax tree (the Composite
design pattern).

16 / 29

DSLs: Special Purpose Language
sudoku6(Puzzle, Solution):-

Solution = Puzzle,
Puzzle = [S11, S12, S13, S14, S15, S16,

S21, S22, S23, S24, S25, S26,
S31, S32, S33, S34, S35, S36,
S41, S42, S43, S44, S45, S46,
S51, S52, S53, S54, S55, S56,
S61, S62, S63, S64, S65, S66],

fd_domain(Solution, 1, 6),
Row1 = [S11, S12, S13, S14, S15, S16],
Row2 = [S21, S22, S23, S24, S25, S26],
Row3 = [S31, S32, S33, S34, S35, S36],
Row4 = [S41, S42, S43, S44, S45, S46],
Row5 = [S51, S52, S53, S54, S55, S56],
Row6 = [S61, S62, S63, S64, S65, S66],
Col1 = [S11, S21, S31, S41, S51, S61],
Col2 = [S12, S22, S32, S42, S52, S62],
Col3 = [S13, S23, S33, S43, S53, S63],
Col4 = [S14, S24, S34, S44, S54, S64],
Col5 = [S15, S25, S35, S45, S55, S65],
Col6 = [S16, S26, S36, S46, S56, S66],
Square1 = [S11, S12, S13, S21, S22, S23],
Square2 = [S14, S15, S16, S24, S25, S26],
Square3 = [S31, S32, S33, S41, S42, S43],
Square4 = [S34, S35, S36, S44, S45, S46],

Square5 = [S51, S52, S53, S61, S62, S63],
Square6 = [S54, S55, S56, S64, S65, S66],

valid([Row1, Row2, Row3, Row4, Row5, Row6,
Col1, Col2, Col3, Col4, Col5, Col6,
Square1, Square2, Square3, Square4, Square5, Square6]),

writeRow(Row1),nl,
writeRow(Row2),nl,nl,
writeRow(Row3),nl,
writeRow(Row4),nl,nl,
writeRow(Row5),nl,
writeRow(Row6),nl
.

valid([]).
valid([Head | Tail]) :- fd_all_different(Head), valid(Tail).
writeRow(R) :-

format('~d ~d ~d ~d ~d ~d', R).

main :- sudoku6([_,_,_,1,_,6,6,_,4,
,,_,1,_,2,_,_,_,
,,_,5,_,1,_,_,_,
6,_,3,5,_,6,_,_,_], X), halt.

:- initialization(main).

Prolog program containing a Sudoku 6x6 solver. Declarative, no algorithm given.

17 / 29

Part II

Design with DSLs in mind

18 / 29

When you design software

I Would you write your own compiler?
You try to use an existing programming language fulfilling all of your needs.

I Would you start by re-implementing your own standard library?
You try to find a good library covering your needs.

I No good date parser in the standard library?
Try to find a good third-party library covering your needs.

I Would you create your own library because nothing else fits and its useful in other
projects?
Maybe.

19 / 29

Design with DSLs in mind

I Would you write your own build system for your project?
Re-use cmake or GNU autotools.

I Would you write your own image format for exporting a picture of your software?
Generate postscript (for printing) or SVG.

I Would you write your own logic program or integer linear programming solver?
Use an existing language and solver instead.

I Would you write your own help system?
Re-use HTML renderers and write the help in HTML (or something that
generates HTML) instead.

I Need to search text for some moderately fancy pattern?
Regular expressions.

I Would you design your own language because nothing else fits?
Possibly. Do you know compiler construction?

20 / 29

Part III

So how do you design a compiler or language?

21 / 29

The Phases of the Compiler
Source program

Lexical
analysis

 Sequence of chars:
 'IF sum=5 THEN...'

Syntactic
analysis

 Sequence of tokens:
 'IF' 'sum' '=' '5'

Error management

Semantic
analysis and
intermediate

code generation

 Parse tree, derivation tree

Code
optimization

 Internal form, intermediate code

Code
generation

 Internal form, intermediate code

Object program

Table management

22 / 29

Example DSL: Modelica

I An equation-based object-oriented modeling
language (a DSL).

I Modeling using a graphical user interface (or
the equivalent textual representation).

I Used for simulation and/or control of
multi-domain (physical) systems.

I Centered around making it easy for a
(mechanical, electrical, etc) engineer to use
Modelica.

p
v

+
-

C
=
1
e
-6

c

R=1e6

r

g

Figure: An RC-circuit constructed in
Modelica by dragging-and-dropping
components and connecting them.

23 / 29

Simulating the RC-circuit

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5

V
o
lt

a
g

e
 [

V
]

time [s]

Figure: Result of simulating the RC-circuit.

24 / 29

Equations

Physics is described by equations, not statements. Thus, Modelica primarily uses
equations instead of imperative programming (like C).
I Equations look like V

R = I
However, the declarative Modelica code needs to be translated into imperative
programming (or similar) in order to run numerical solvers on a CPU. So it could be
solved as either of:
I V := R ∗ I
I I := V

R
I R := V

I

25 / 29

OpenModelica Parts

I Parser (using the ANTLR parser generator).
I Front-end (semantic analysis, like a traditional compiler).
I Equation back-end (symbolic math, outputs imperative code from equations).
I Code generator (takes the causal imperative code and generates C-code, skipping

the middle-end and the back-end of a traditional compiler).
I Utilities.
I Scripting environment.
I Front-end + code generator handles MetaModelica (functions).
I The compiler is also written in MetaModelica (bootstrapping).

26 / 29

Testing a Modelica Compiler

I Testing a C-compiler is easier because the exact translation semantics are
specified.

I In Modelica, a compiler needs to decide by itself how to generate code.
I Numerical differences depending on how an equation is solved.
I Compare result-files with a relative + absolute tolerance and some magic to align

discrete event times.

27 / 29

Testing a Modelica Compiler

28 / 29

Next

I Seminar on cross platform on Friday
I DSL lab on Monday

29 / 29

www.liu.se

	Domain-Specific Languages (DSLs)
	Design with DSLs in mind
	So how do you design a compiler or language?

