TDDEA45 - Lecture 5: Domain-Specific Languages

Adrian Pop and Martin Sjélund

Department of Computer and Information Science
Linképing University

2023-09-20

LINKOPING
II.“ UNIVERSITY

Part |

Domain-Specific Languages (DSLs)

LINKOPING
II.“ UNIVERSITY

3/29

Domain-Specific Languages

» Many are similar to classic, general-purpose programming languages (e.g. PHP).

> Examples include Unix shells, SQL, HTML, regular expressions, parser generators,
some XML schemas, and many more.

> Compilers are usually implemented partially using domain-specific languages
(grammars, special languages to describe architectures, etc).

> Why? It is easier to program and maintain such code.

LINKOPING
II.“ UNIVERSITY

4/29
DSLs: Markup Languages

Markdown (.md) - used on github, gitlab for example

Wiki - various flavors - used on Wikipedia, Trac, etc

>

>

> Doxygen - generate documentation from source code

» Sphinx - generate documentation from reStructured Text (.rst)
>

LaTeX (.tex) - used to write articles, books and such
\begin{frame}[fragile]{DSLs: Markup Languages}

\begin{itemize}

\item Markdown (.md) - used on github, giftlah for example

\item Wiki - various flavors - used on Wikipedia, Jpag, etc

\item Dpxygen - generate documentation from source code

\item Sphinx - generate deocumentation from reStructuredlext (.rst)
\item LaleX (.fex) - used to write articles, books and such
\end{itemize}

\end{frame}

LINKOPING
II.“ UNIVERSITY

5/29

DSLs: Markup Languages - HTML

<!DOCTYPE html>

<html>

<body>

<h1>My first HTML page</h1>

<p>Hello, world!</p>

</body>
</html>

HTML is markup code (some of which is interpreted)

LINKOPING
II.“ UNIVERSITY

6/29

DSLs: Template Languages

<!DOCTYPE html>
<html>
<body>

<h1>My first PHP page</h1>
<?php

echo $_SERVER["REMOTE_ADDR"];
2>

</body>

</html>

PHP code (highlighted)

LINKOPING
II.“ UNIVERSITY

7/29
DSLs: Template Languages

<!DOCTYPE html>
<html>
<body>

<h1>My first PHP page</h1>
<?php

echo $_SERVER["REMOTE_ADDR"];
2>

</body>

</html>

PHP code in-between pieces of code or markup. Typical usage is in web services
(Facebook uses their own language derived from PHP because PHP at the time was
too slow; modern PHP is slightly faster than Facebook’'s HHVM).

LINKOPING
II.“ UNIVERSITY

8/29

DSLs: Embedded Scripting Languages

<!DOCTYPE html>
<html>
<body>

<p id="demo"></p>

<script>
document .getElementById("demo") .innerHTML = "Hello World!";
</script>

</body>
</html>

JavaScript (JS) is interpreted code that was fast enough to be embedded in
web-browsers back in 1997 (but JS is more like a general-purpose language these days)

LINKOPING
II.“ UNIVERSITY

9/29

DSLs: Shell Scripting Languages

#!/bin/bash

if test -f testsuite/Makefile; then
cd testsuite
for test in *.test; do
grep '"status: *correct" "$test"
done
fi

Bash is either an interactive shell or interpreted code suitable for running system
commands

LINKOPING
II.“ UNIVERSITY

10/29

DSLs: Regular expressions

Look for lime starting with status: correct

grep "“status: *correct" "$test"

Look for openmodelica.org in the apacheZ2 config

grep -R "openmodelical.]org" /etc/apache2

Replace all occurrences of http with htips in the file
sed -i s,http://,https://,g file

sed -i s/SearchedText/ReplacedText/g file

Regular expressions appear almost everywhere from text editors to the venerable grep
or sed.

LINKOPING
II." UNIVERSITY

11/29

DSLs: Build configuration

AC_PREREQ([2.63])

AC_INIT([OMCompiler], [dev], [https://trac.openmodelica.org/OpenModelical,
[openmodelical, [https://openmodelica.org])

AC_LANG([C])

AC_PROG_CC

AC_SEARCH_LIBS (dlopen,dl)

AC_SUBST (EXTRA_LDFLAGS)

...

AC_OUTPUT (Makefile)

autoconf (m4) translates a description of possible build configurations and generates
a shell script (./configure) that configures for example Makefile files.

LINKOPING
II.“ UNIVERSITY

12/29

DSLs: Build systems - make

Example partial Makefile:

Makefile.in
EXTRA_LDFLAGS=QEXTRA_LDFLAGS®@

SomeFile.o: SomeCommand.c SomeCommand.h
$(CC) -o $@ —c $< $(CFLAGS)

libSomeLib.so: $(DEPS) SomeFile.o

Orm -f $0
$(CC) -shared -o $@ $(DEPS) SomeFile.o $(LDFLAGS) $(EXTRA_LDFLAGS)

make interprets build dependencies and build rules to run shell commands

LINKOPING
II.“ UNIVERSITY

DSLs: Images and diagrams

@startuml

abstract class Document;

class MultiFunctionPrinter {
void Print(Document d);
Document Scan();
void Fax(Document d);

}

class BasicPrinter {
void Print(Document 4d);

}

interface AbstractPrinter {
{abstract} void Print(Document d);
{abstract} Document Scan();
{abstract} void Fax(Document d);

}

13/29

@ AbstractPrinter

@ Document;

void Print(Document d);

Document Scan();

void Fax(Document d);

© MultiFunctionPrinter

© BasicPrinter
void Print(Document d);

Document Scan(); void Print(Document d);
void Fax(Document d);

"Needs to add dummy Scan and FaxBL
uppo

note bottom of BasicPrinter : "Needs to add dummy Scan and Fax\[functions thatare notsupported”
AbstractPrinter <|-- BasicPrinter
AbstractPrinter <|-- MultiFunctionPrinter
II ﬁLN Ih%ml
@ UNIVERSITY Plantl INM! cvintav fAar Avawvviinea A LIML ~Alace Alnarram

DSLs: Parser Generators (Language Recognition)

(*¥ a simple program syntaz in EBNF - Wikipedia *)
program = 'PROGRAM', white_space, identifier, white_space,
'BEGIN', white_space,

{ assignment, ";", white_space },
'END. "' ;
identifier = alphabetic_character, { alphabetic_character | digit } ;
number = ["-"], digit, { digit } ;
string = "'" , { all_characters - "'" }, "'"
assignment = identifier , ":=" , (number | identifier | string) ;
alphabetic_character = WAM | ngn I ngn | npn | ngn | ngn | ngn
(< I T S T O B N L B I
| nDn | npn nQu an | nsu | nn | IIUII
I nyn | " nyn nyn | ngn

digit = "0" |
white_space =
all_characters =

See also courses in Formal Languages (TDDD14, etc) or Compiler Construction
TDDB44, TDDD55).

INKOPING
UNIVERSITY

ll1|l
? white_space characters 7 ;

l ||2

? all visible characters 7 ;

"3

ngn

ngn

ngn

>

ral

ngn

ngn

14 /29

15/29

DSLs: Parser Generators (Language Recognition): Example

PROGRAM DEMO1
BEGIN
A:=3;
B:=45;
H:=-100023;
C:=A;
D123:=B344;
BABOON : =GIRAFFE;
TEXT:='Hello world!';
END.

Syntactically correct program according to the grammar on the previous slide.
Note that programs are usually parsed into an abstract syntax tree (the Composite
design pattern).

LINKOPING
II.“ UNIVERSITY

16/29

DSLs: Special Purpose Language

sudoku6 (Puzzle, Solution):- Square5 = [S51, S52, S53, S61, S62, S63],

Solution = Puzzle, Square6 = [S54, S55, S56, S64, S65, S66],

Puzzle = [S11, S12, S13, S14, S15, S16,
S21, S§22, 823, S24, S25, S26, valid([Rowl, Row2, Row3, Row4, Row5, Row6,
S31, 832, 833, s34, S35, S36, Coll, Col2, Col3, Col4, Col5, Col6,
S41, S42, S43, S44, S45, S46, Squarel, Square2, Square3, Square4, Squareb, Square6]),
s51, 852, S63, Sb54, S55, S66, writeRow(Row1),nl,
S61, S62, S63, S64, S65, S66], writeRow(Row2) ,nl,nl,

fd_domain(Solution, 1, 6), writeRow(Row3),nl,

Rowl = [S11, S12, S13, Si14, Si15, si6], writeRow(Row4) ,nl,nl,

Row2 = [S21, S22, S23, S24, S25, S26], writeRow(Row5) ,nl,

Row3 = [S31, S32, S33, S34, S35, S36], writeRow(Row6) ,nl

Row4 = [S41, S42, S43, S44, S45, S46],
Row5 = [S51, S52, S53, S54, S55, S561,

Row6 = [S61, S62, S63, S64, S65, S661, valid([1).

Coll = [S11, S21, S31, S41, S51, 8611, valid([Head | Taill) :- fd_all_different(Head), valid(Tail)
Col2 = [S12, S22, S32, S42, S52, 8621, writeRow(R) :-

Col3 = [s13, s$23, S33, 543, S53, S63], format('~d ~d ~d ~d ~d ~d', R)

Col4 = [S14, S24, S34, sS44, Sb54, S64],

Cols = [S15, $25, S35, S45, S55, S65], main

Col6 = [S16, S26, S36, S46, S56, S66],

Squarel = [S11, S12, $13, S21, S22, $23],
Square2 = [S14, S15, S16, S24, S25, S26],
Square3 = [S31, S32, S33, S41, S42, S43],
Square4 = [S34, S35, S36, S44, S45, S46], :- initialization(main).

Prolog program containing a Sudoku 6x6 solver. Declarative, no algorithm given.

LINKOPING
UNIVERSITY

Part Il

Design with DSLs in mind

LINKOPING
II.“ UNIVERSITY

18/29

When you design software

» Would you write your own compiler?

You try to use an existing programming language fulfilling all of your needs.
» Would you start by re-implementing your own standard library?

You try to find a good library covering your needs.

> No good date parser in the standard library?
Try to find a good third-party library covering your needs.

» Would you create your own library because nothing else fits and its useful in other
projects?
Maybe.

LINKOPING
II.“ UNIVERSITY

Design with DSLs in mind

>

| 2

LINKOPING
UNIVERSITY

Would you write your own build system for your project?
Re-use cmake or GNU autotools.

Would you write your own image format for exporting a picture of your software?
Generate postscript (for printing) or SVG.

Would you write your own logic program or integer linear programming solver?
Use an existing language and solver instead.

Would you write your own help system?

Re-use HTML renderers and write the help in HTML (or something that
generates HTML) instead.

Need to search text for some moderately fancy pattern?
Regular expressions.

Would you design your own language because nothing else fits?
Possibly. Do you know compiler construction?

19/29

Part il

So how do you design a compiler or language?

LINKOPING
II.“ UNIVERSITY

21/29

The Phases of the Compiler

Source program

Sequence of chars:
'IF sum=5 THEN..."

Lexical
analysis

Saguence of tokens:

TF' 'sum’ '=" ‘5"

actic
lysis

, deNvation tree

Error management

Internalform /intermediate code

Parse t!

Semantic
analysis and
intermediate

code generation

Table management

Code
optimization

Internal form, intermediate code

Code
generation

LINKOPING 2
UNIVERSITY Object program

Example DSL: Modelica

» An equation-based object-oriented modeling
language (a DSL).

» Modeling using a graphical user interface (or
the equivalent textual representation).

» Used for simulation and/or control of
multi-domain (physical) systems.
» Centered around making it easy for a

(mechanical, electrical, etc) engineer to use
Modelica.

LINKOPING
II.“ UNIVERSITY

22/29

Figure: An RC-circuit constructed in
Modelica by dragging-and-dropping
components and connecting them.

23/29

Simulating the RC-circuit

250
200 +— 1
EE 150 + 1
(0]
(@]
8
£ 100 - N
50 - 1
by °©

24/29

Equations

Physics is described by equations, not statements. Thus, Modelica primarily uses
equations instead of imperative programming (like C).

» Equations look like % =
However, the declarative Modelica code needs to be translated into imperative
programming (or similar) in order to run numerical solvers on a CPU. So it could be
solved as either of:

>V =Rxl
»I:%
»R:%

LINKOPING
II.“ UNIVERSITY

25/29

OpenModelica Parts

Parser (using the ANTLR parser generator).
Front-end (semantic analysis, like a traditional compiler).

Equation back-end (symbolic math, outputs imperative code from equations).

vVvyYVvyy

Code generator (takes the causal imperative code and generates C-code, skipping
the middle-end and the back-end of a traditional compiler).

Utilities.
Scripting environment.

Front-end + code generator handles MetaModelica (functions).

vVvyyVvyy

The compiler is also written in MetaModelica (bootstrapping).

LINKOPING
II.“ UNIVERSITY

26 /29

Testing a Modelica Compiler

> Testing a C-compiler is easier because the exact translation semantics are
specified.

» In Modelica, a compiler needs to decide by itself how to generate code.

v

Numerical differences depending on how an equation is solved.

> Compare result-files with a relative 4+ absolute tolerance and some magic to align
discrete event times.

LINKOPING
II.“ UNIVERSITY

27/29

Testing a Modelica Compiler

¥ reference ¥ actual ¥ high ¥ low ¥ error ' actual (original) Parameters used for the comparison: Relative tolerance 0.003
(local), 0.003 (relative to max-min). Range delta 0.001. Li
-1

16100: reference: -1.86
N actual: -2.99 high: -0.05 4.74
low: -3.07 20

12800 13000 13200 13400 13600 13800 14000 14200 14400 14600 14800 15000 15200 15400 15600 15800 16000
time

LINKOPING
UNIVERSITY

28/29

Next

> Seminar on cross platform on Friday
» DSL lab on Monday

LINKOPING
II.“ UNIVERSITY

www.liu.se

LINKOPING
II.“ UNIVERSITY

	Domain-Specific Languages (DSLs)
	Design with DSLs in mind
	So how do you design a compiler or language?

