
1 / 111

TDDE45 - Lecture 2: Design Patterns

Adrian Pop and Martin Sjölund

Department of Computer and Information Science
Linköping University

2023-08-30



2 / 111

Part I

Intro



3 / 111

Brief History (1)

General concept of patterns (253 of them, for architecture in the buildings sense):

Similarities between software design and architecture was noted by Smith 1987.



4 / 111

Brief History (2)

By 1995, the Design Patterns book by the Gang of
Four was published (Gamma et al. 1995).
Many of the patterns are based on existing idioms
in programming languages.
New patterns have been created over the years:
Kind GoF Wikipedia
Creational 5 10
Structural 7 12
Behavioral 11 15
Concurrency 0 16



5 / 111

Principles + Problem = Pattern



6 / 111

Principles = SOLID + Some general tips



7 / 111

SOLID

1. Encapsulate what varies (S)
2. Program to an interface, not to an implementation (I, D)
3. Favor Composition over Inheritance (L)
4. Don’t call us, we’ll call you (O)



8 / 111

Some more tips

5. Depend upon abstractions, not upon concrete classes (see 2).
6. Strive for loosely coupled designs between objects that interact (see 4).
7. Only talk to your friends.
8. Avoid global variables (constants can be fine), static methods (thread-safe code).
9. Simple, readable code is often favorable over strictly adhering to the design

principles.



9 / 111

Part II

Some preparation for seminar 1



10 / 111

Full instructions are on the course homepage

One of your tasks is to:
Read specifically the Intent, Motivation, Applicability and Structure of 4 design
patterns per person in the Gang of Four course book (or the corresponding
parts in another source such as Head First Design Patterns).



11 / 111

Structure of the book
The Gang of Four book is very structured; the following is a summary of section 1.3:
I Pattern name and classification (creational, structural, behavioral; class or object)
I Intent
I Also known as
I Motivation
I Applicability – what poor designs can this pattern solve?
I Structure – graphical representation (using OMT – a predecessor to UML (1997))
I Participants – classes or objects in the design pattern
I Collaborations – related to participants
I Consequences – trade-offs?
I Implementation – pitfalls, hints?
I Sample code (C++ or smalltalk)
I Known uses (from real code; you could of course list Eclipse on every design

pattern)
I Related patterns – many patterns do similar things; how do they differ? Which

design patterns can you combine with it?



12 / 111

Part III

Some Design Patterns



13 / 111

Outline

I Strategy
I Factory Method
I Decorator
I Template Method
I Composite
I Abstract Factory (+ Dependency

Injection)
I Singleton (+ example in Ruby)

I Builder
I Adapter
I Bridge
I Observer
I Chain of Responsibility
I Memento
I Command



14 / 111

Part IV

Strategy



15 / 111

Strategy

Context
Strategy

Client



16 / 111

Strategy: Consequences

+ Can choose implementation of a
strategy at run time

+ Eliminate hardcoded conditionals
+ Avoids excessive subclassing

- Clients must be aware of different
strategies

- Communication required between
context and strategies

- Potentially many strategy objects
created



17 / 111

Part V

Factory Method



18 / 111

Factory method (before)



19 / 111

Factory method (before)

Pizza pizza = null;
if (style.equals("NY")) {

if (type.equals("cheese")) {
pizza = new NYStyleCheesePizza();

} else if (type.equals("veggie")) {
pizza = new NYStyleVeggiePizza();

} else if (type.equals("clam")) {
pizza = new NYStyleClamPizza();

} else if (type.equals("pepperoni")) {
pizza = new NYStylePepperoniPizza();

}
} else if (style.equals("Chicago")) {

if (type.equals("cheese")) {
pizza = new ChicagoStyleCheesePizza();

} else if (type.equals("veggie")) {
pizza = new ChicagoStyleVeggiePizza();

} else if (type.equals("clam")) {
pizza = new ChicagoStyleClamPizza();

} else if (type.equals("pepperoni")) {
pizza = new ChicagoStylePepperoniPizza();

}
} else {

System.out.println("Error: invalid type of pizza");
return null;

}



20 / 111

Factory method



21 / 111

Factory method

+ Decouples clients from specific
dependency classes

+ Eliminates hardcoded conditionals
+ Connects parallel class hierarchies

(NY*Pizza, Chicago*Pizza)

- Requires keeping factory methods in
sync with domain classes



22 / 111

Part VI

Decorator



23 / 111

Decorator

Beverage b = new Coffee();
b = new SweetenedBeverage(new SweetenedBeverage(b));

return 5+beverage.cost();

Component

Decorator



24 / 111

Decorator

+ Dynamically adds behavior to specific
instances of a class

+ Customizes an abstract class without
knowing the implementations

- Decorator objects are not of the same
type as the objects it comprises

- May result in many small objects



25 / 111

Part VII

Template Method



26 / 111

Template Method

class Coffee{
public:

void prepareRecipe();
void boilWater();
void brewCoffeeGrinds();
void pourInCup();
void addSugarAndMilk();

};
class Tea{
public:

void prepareRecipe();
void boilWater();
void steepTeaBag();
void pourInCup();
void addLemon();

};

class Beverage {
public:

void prepareRecipe();
void boilWater();
void pourInCup();
// No brew==steep
// No addCondiments

};



27 / 111

Template method: Consequences

+ Can isolate the extensions possible to an algorithm
+ Isolates clients from algorithm changes



28 / 111

Template method



29 / 111

Default implementations (hooks)
public abstract class CaffeineBeverageWithHook {

void prepareRecipe() {
boilWater();
brew();
pourInCup();
if (customerWantsCondiments()) {

addCondiments();
}

}
boolean customerWantsCondiments() {

return true;
}

}

public class CoffeeWithHook extends CaffeineBeverageWithHook {
// ...
public boolean customerWantsCondiments() {

return getUserInput().toLowerCase().startsWith("y");
}

}



30 / 111

Template method?

Duck[] ducks = {
new Duck("Daffy", 8),
new Duck("Dewey", 2),
new Duck("Howard", 7),
new Duck("Louie", 2),
new Duck("Donald", 10),
new Duck("Huey", 2)

};

Arrays.sort(ducks, new Comparator <Duck >(){

@Override
public int compare(Duck arg0, Duck arg1) {

return new Integer(arg1.weight).compareTo(arg0.
weight);

}
});

No

public class Duck implements Comparable <Duck> {
String name;
int weight;

public Duck(String name, int weight) {
this.name = name;
this.weight = weight;

}

public String toString() {
return MessageFormat.format("{0} weighs {1}",

name, weight);
}

public int compareTo(Duck object) {
return new Integer(this.weight).compareTo(object

.weight);
}

}

Yes



31 / 111

Java 8: With inline lambda (not Template method)

Arrays.sort(ducks , (arg0, arg1) -> new Integer(arg1.weight)
.compareTo(arg0.weight));



32 / 111

Part VIII

Composite



33 / 111

Breakfast 
menu

Coffee 
menu

Ham & 
eggs

Spam & 
eggs

Eggs & 
spam

Spam, 
spam & 

eggs

Coffee 
menu

Dark 
roast 

Coffee
Tea Espresso

Pizza 
menu

Coffee 
menu

Clam 
Pizza

Cheese 
Pizza

Diner 
menu

Waiter

printMenu()

print()

print()

print()

print()



34 / 111



35 / 111

Client

Component

Composite

Leaf



36 / 111

Composite: consequences

+ Allow us to treat composite objects
and individual objects uniformly

+ Allows arbitrarily complex trees

- Creates composite classes that violate
the principle of a single responsibility

- The composite cannot rely on
components to implement all methods



37 / 111

Part IX

Abstract Factory



38 / 111



39 / 111



40 / 111

NY

Chicago

Fresh Clam

Mozzarella Cheese

Thin Crust Dough

Frozen Clam
Parmesan Cheese

Thick Crust Dough

Ingredients Pizza Store Clients

I Want a 
Cheese 
Pizza



41 / 111



42 / 111



43 / 111



44 / 111

Abstract Products

Abstract Factory

Concrete Factory



45 / 111

Clients



46 / 111

Abstract factory: consequences

+ Isolates clients from concrete dependencies
+ Makes interchanging families of products easier



47 / 111

Strategy – behavioural
I When related classes only differ in

behaviour
I You need different variants of an

algorithm
I An algorithm uses data the clients

don’t need to know
I A class uses conditionals for selecting

behavior

Abstract factory – creational
I A system should be independent of

how its products are created
I A system should be configured with

one of multiple families of products
I You want to provide a class library of

products, and only expose their
interfaces



48 / 111

Design principles - Abstract Factory

I Encapsulate what varies
I Program to an interface, not to an implementation
I Favor composition over inheritance
I Classes should be open for extension but closed for modification
I Don’t call us, we’ll call you



49 / 111

Part X

Dependency Injection



50 / 111

Dependency injection: How?

1. Declare dependencies as constructor arguments of interface types
2. Register classes (components) in an Inversion-of-Control Container
3. Resolve the top-level object from an interface through the Container



51 / 111

1. Dependencies
namespace DITest {

public class FancyClamPizza: IClamPizza {
private IClam clam;
private ICheese cheese;
public FancyClamPizza (IClam clam, ICheese cheese) {

this.clam = clam;
this.cheese = cheese;

}
public String ClamType() {

return String.Format("fancy {0}",clam);
}
public String Describe() {

return String.Format("fancy clam pizza with {0} and
{1}",ClamType(), cheese);

}
}

}



52 / 111

2. Registration

namespace DITest{
public class IoCInstaller: IWindsorInstaller {

public void Install(IWindsorContainer container , IConfigurationStore
store) {

container.Register(Classes
.FromThisAssembly()
.InNamespace("DITest.NYStyle")
.WithServiceAllInterfaces());

container.Register(Classes
.FromThisAssembly()
.AllowMultipleMatches()
.InSameNamespaceAs <IoCInstaller >()
.WithServiceAllInterfaces());

}
}
}

Castle Windsor, http://www.castleproject.org

http://www.castleproject.org


53 / 111

3. Resolution

var container = new WindsorContainer();
// adds and configures all components using

WindsorInstallers from executing assembly
container.Install(FromAssembly.This());

// instantiate and configure root component and all its
dependencies and their dependencies and...

var p = container.Resolve <ICheesePizza >();
Console.WriteLine(p.Describe());

// clean up, application exits
container.Dispose();



54 / 111

Part XI

Singleton



55 / 111

What about static methods?
public class Singleton {

private static Singleton instance = new Singleton();
private String name;
public String getName() {

return name;
}
public static void someOtherMethod(){

System.out.println("Hi there!");
}
private Singleton() {

try {
// Very expensive job indeed
Thread.sleep(100);

} catch (InterruptedException e) {
e.printStackTrace();

}
name = Math.random() > 0.5 ? "Jonas" : "Anders";

}
}

Our app takes forever to load if the Singleton class is part of it.



56 / 111

// Thread that does not use the Singleton object
Thread t1 = new Thread(new StaticMethodInvocation());
// Thread that uses the Singleton object
Thread t2 = new Thread(new SingletonLookup());
t0 = System.nanoTime();
t1.start();
t2.start();
try {

t1.join();
t2.join();

} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}

someOtherMethod invoked
Singleton name: Anders
Singleton lookup took 1 003 348 000 ns
Static method invocation took 1 002 463 000 ns



57 / 111

How about now?

private static Singleton instance;

public static Singleton getInstance() {
if (instance == null) {

instance = new Singleton();
}
return instance;

}

I How about now?
someOtherMethod invoked
Singleton name: Anders
Static method invocation took 899 000 ns
Singleton lookup took 1 003 348 000 ns



58 / 111

What about threads?



59 / 111

private Singleton() {
try {

// Very expensive job indeed
Thread.sleep(100);

} catch (InterruptedException e) {
e.printStackTrace();

}
name = Math.random() > 0.5 ? "Jonas" : "Anders";

}

private static final class SingletonLookup implements Runnable {
@Override
public void run() {

System.out.println(MessageFormat.format("Singleton name: {0}
",
Singleton.getInstance().getName()));

}
}



60 / 111

public static void main(String[] args) {
Thread t1 = new Thread(new SingletonLookup());
Thread t2 = new Thread(new SingletonLookup());
t0 = System.nanoTime();
t1.start(); t2.start();
try {

t1.join();
t2.join();

} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
System.out.println("Singleton name after our threads have run:

"+Singleton.getInstance().getName());
}

Singleton name: Jonas
Singleton name after our threads have run: Anders Oops!



61 / 111

public static synchronized Singleton getInstance() {
if (instance == null) {

instance = new Singleton();
}
return instance;

}

Singleton name: Anders
Singleton name: Anders
Singleton lookup took 1 003 340 000 ns
Singleton lookup took 1 003 286 000 ns
Singleton name after our threads have run: Anders

Woohoo!



62 / 111

Singleton: consequences

- Violates several design principles!
+ Ensures single objects per class

I Saves memory
I Ensures consistency



63 / 111

Singleton considered dangerous

I Encapsulate what varies
I Program to an interface, not to an implementation
I Favor composition over inheritance
I Classes should be open for extension but closed for modification
I Don’t call us, we’ll call you
I Depend on abstractions, do not depend on concrete classes
I Classes should only have one reason to change
I Strive for loosely-coupled design



64 / 111

Part XII

Builder



65 / 111



66 / 111



67 / 111



68 / 111

Director

Builder

Client



69 / 111

Abstract Factory

Client receives a Factory
Client requests a product from Factory ⇒ Client receives an abstract product

Builder

Client initializes Director with Builder
Client asks Director to build
Client requests product from Builder ⇒ Client receives a builder-specific product



70 / 111

Builder: consequences

+ Can control the way objects are
created

+ Can produce different products using
the same Director

- Not necessarily a common interface
for products

- Clients must know how to initialize
builders and retrieve products



71 / 111

Part XIII

Adapter



72 / 111

Adapter



73 / 111

Class Adapter

Object Adapter



74 / 111

Multiple back-end objects



75 / 111

Multiple back-end methods



76 / 111

public interface Duck {
public void quack();
public void fly();

}

public class TurkeyAdapter implements
Duck {

Turkey turkey;

public TurkeyAdapter(Turkey turkey) {
this.turkey = turkey;

}

public void quack() {
turkey.gobble();

}

public void fly() {
for(int i=0; i < 5; i++) {

turkey.fly();
}

}
}

public interface Turkey {
public void gobble();
public void fly();

}

public class DuckAdapter implements
Turkey {

Duck duck;
Random rand;

public DuckAdapter(Duck duck) {
this.duck = duck;
rand = new Random();

}

public void gobble() {
duck.quack();

}

public void fly() {
if (rand.nextInt(5) == 0) {

duck.fly();
}

}
}



77 / 111

Adapter: consequences

+ Isolates interface changes to the adapter class
- Class adapters require target interfaces or multiple inheritance in the language



78 / 111

Part XIV

Bridge



79 / 111

Abstraction == That which we (should) care about



80 / 111

Bridge Strategy
Intent Decouple two class hierarchies (ab-

straction/implementation)
Allow for exchangeable algorithms

Collaborations The Bridge forwards requests to the
Implementor

The Context and Strategy collabo-
rate, passing data between them



81 / 111

Bridge Adapter
Intent Decouple two class hierarchies (ab-

straction/implementation)
Convert an existing class to fit a
new interface

Applicability In a new system In an existing system



82 / 111

Design principles - Bridge

I Encapsulate what varies
I Program to an interface, not to an implementation
I Favor composition over inheritance
I Classes should be open for extension but closed for modification
I Don’t call us, we’ll call you
I Depend on abstractions, do not depend on concrete classes
I Classes should only have one reason to change



83 / 111

Bridge: consequences

+ Lets two class hierarchies with common superclasses vary independently
- If some implementation classes do not support an abstract concept, the
abstraction breaks



84 / 111

Part XV

Observer



85 / 111

RSS feeds



86 / 111



87 / 111



88 / 111

Subject Concrete Observers



89 / 111

Mediator vs Observer

An Observer lets one object (or event) talk to a set of objects.
A Mediator lets objects talk to each other through the Mediator.



90 / 111

Design principles - Observer

I Encapsulate what varies
I Program to an interface, not to an implementation
I Favor composition over inheritance
I Classes should be open for extension but closed for modification
I Don’t call us, we’ll call you
I Depend on abstractions, do not depend on concrete classes
I Classes should only have one reason to change
I Strive for loosely-coupled design



91 / 111

Part XVI

Chain of Responsibility



92 / 111



93 / 111



94 / 111

Examples

I Logging
I Input management in GUI:s



95 / 111

Chain of Responsibility: consequences

+ Provides the Observer with more control over invocation of targets
- A handler does not know if it will receive a message, depending on the behavior of
other handlers in the chain



96 / 111

Part XVII

Memento



97 / 111

Memento



98 / 111



99 / 111

Optimize()
Abort()
GetState()
SetState()

iteration
current target value
current solution

Iterative Optimizer

Optimize()
Abort()
ResetOptimizer(SolverMemento)

- memento
- optimizer

Client

iteration
current target value
current solution

SolverMemento



100 / 111

Mementos in GUIs - Undo/Redo



101 / 111

Memento: consequences

+ Can externalize object state for later restoration within the lifetime of the object
+ Encapsulates access to the objects’ inner state
- Depending on implementation, access to private fields requires memento classes
as inner/friend classes to each domain class



102 / 111

Part XVIII

Command



103 / 111

Command



104 / 111

Remote control



105 / 111



106 / 111



107 / 111

Command: consequences

+ Allows extensions of commands
+ Decouples the execution from the specification of the command
- Bad design if not needed!
- May be confusing if it removes the receiver from responsibilities



108 / 111

Part XIX

Finishing up



109 / 111

Template method, strategy, or factory?

I When is the algorithm chosen?
Compile-time Template

Run-time Strategy, Factory
Template Often has several methods in the class, all implemented by the pattern
Strategy Usually only has one method in the class (execute or similar)
Factory Is a creational pattern (returns an object)



110 / 111

Coursework

I Intro seminar
I Using design patterns lab (implement design in skeleton) + seminar (finished with

the lab and share solution 24h in advance)
I Design principles and Reading design patterns (next week)



111 / 111

References

Erich Gamma et al. Design Patterns: Elements of Reusable
Object-oriented Software. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1995. isbn: 0-201-63361-2.
Reid Smith. “Panel on Design Methodology”. In: Addendum to the
Proceedings on Object-oriented Programming Systems, Languages and
Applications (Addendum). OOPSLA ’87. Orlando, Florida, USA: ACM,
1987, pp. 91–95. isbn: 0-89791-266-7. doi: 10.1145/62138.62151.

https://doi.org/10.1145/62138.62151

	Intro
	Some preparation for seminar 1
	Some Design Patterns
	Strategy
	Factory Method
	Decorator
	Template Method
	Composite
	Abstract Factory
	Dependency Injection
	Singleton
	Builder
	Adapter
	Bridge
	Observer
	Chain of Responsibility
	Memento
	Command
	Finishing up
	References


