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Part I

Intro
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Brief History (1)

General concept of patterns (253 of them, for architecture in the buildings sense):

Similarities between software design and architecture was noted by Smith 1987.
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Brief History (2)

By 1995, the Design Patterns book by the Gang of
Four was published (Gamma et al. 1995).
Many of the patterns are based on existing idioms
in programming languages.
New patterns have been created over the years:
Kind GoF Wikipedia
Creational 5 10
Structural 7 12
Behavioral 11 15
Concurrency 0 16
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Principles + Problem = Pattern
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Principles = SOLID + Some general tips
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SOLID

1. Encapsulate what varies (S)
2. Program to an interface, not to an implementation (I, D)
3. Favor Composition over Inheritance (L)
4. Don’t call us, we’ll call you (O)
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Some more tips

5. Depend upon abstractions, not upon concrete classes (see 2).
6. Strive for loosely coupled designs between objects that interact (see 4).
7. Only talk to your friends.
8. Avoid global variables (constants can be fine), static methods (thread-safe code).
9. Simple, readable code is often favorable over strictly adhering to the design

principles.
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Part II

Some preparation for seminar 1
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Full instructions are on the course homepage

One of your tasks is to:
Read specifically the Intent, Motivation, Applicability and Structure of 4 design
patterns per person in the Gang of Four course book (or the corresponding
parts in another source such as Head First Design Patterns).
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Structure of the book
The Gang of Four book is very structured; the following is a summary of section 1.3:
I Pattern name and classification (creational, structural, behavioral; class or object)
I Intent
I Also known as
I Motivation
I Applicability – what poor designs can this pattern solve?
I Structure – graphical representation (using OMT – a predecessor to UML (1997))
I Participants – classes or objects in the design pattern
I Collaborations – related to participants
I Consequences – trade-offs?
I Implementation – pitfalls, hints?
I Sample code (C++ or smalltalk)
I Known uses (from real code; you could of course list Eclipse on every design

pattern)
I Related patterns – many patterns do similar things; how do they differ? Which

design patterns can you combine with it?



12 / 111

Part III

Some Design Patterns
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Outline

I Strategy
I Factory Method
I Decorator
I Template Method
I Composite
I Abstract Factory (+ Dependency

Injection)
I Singleton (+ example in Ruby)

I Builder
I Adapter
I Bridge
I Observer
I Chain of Responsibility
I Memento
I Command
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Part IV

Strategy
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Strategy

Context
Strategy

Client
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Strategy: Consequences

+ Can choose implementation of a
strategy at run time

+ Eliminate hardcoded conditionals
+ Avoids excessive subclassing

- Clients must be aware of different
strategies

- Communication required between
context and strategies

- Potentially many strategy objects
created
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Part V

Factory Method
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Factory method (before)
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Factory method (before)

Pizza pizza = null;
if (style.equals("NY")) {

if (type.equals("cheese")) {
pizza = new NYStyleCheesePizza();

} else if (type.equals("veggie")) {
pizza = new NYStyleVeggiePizza();

} else if (type.equals("clam")) {
pizza = new NYStyleClamPizza();

} else if (type.equals("pepperoni")) {
pizza = new NYStylePepperoniPizza();

}
} else if (style.equals("Chicago")) {

if (type.equals("cheese")) {
pizza = new ChicagoStyleCheesePizza();

} else if (type.equals("veggie")) {
pizza = new ChicagoStyleVeggiePizza();

} else if (type.equals("clam")) {
pizza = new ChicagoStyleClamPizza();

} else if (type.equals("pepperoni")) {
pizza = new ChicagoStylePepperoniPizza();

}
} else {

System.out.println("Error: invalid type of pizza");
return null;

}
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Factory method
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Factory method

+ Decouples clients from specific
dependency classes

+ Eliminates hardcoded conditionals
+ Connects parallel class hierarchies

(NY*Pizza, Chicago*Pizza)

- Requires keeping factory methods in
sync with domain classes
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Part VI

Decorator
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Decorator

Beverage b = new Coffee();
b = new SweetenedBeverage(new SweetenedBeverage(b));

return 5+beverage.cost();

Component

Decorator
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Decorator

+ Dynamically adds behavior to specific
instances of a class

+ Customizes an abstract class without
knowing the implementations

- Decorator objects are not of the same
type as the objects it comprises

- May result in many small objects
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Part VII

Template Method



26 / 111

Template Method

class Coffee{
public:

void prepareRecipe();
void boilWater();
void brewCoffeeGrinds();
void pourInCup();
void addSugarAndMilk();

};
class Tea{
public:

void prepareRecipe();
void boilWater();
void steepTeaBag();
void pourInCup();
void addLemon();

};

class Beverage {
public:

void prepareRecipe();
void boilWater();
void pourInCup();
// No brew==steep
// No addCondiments

};
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Template method: Consequences

+ Can isolate the extensions possible to an algorithm
+ Isolates clients from algorithm changes
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Template method
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Default implementations (hooks)
public abstract class CaffeineBeverageWithHook {

void prepareRecipe() {
boilWater();
brew();
pourInCup();
if (customerWantsCondiments()) {

addCondiments();
}

}
boolean customerWantsCondiments() {

return true;
}

}

public class CoffeeWithHook extends CaffeineBeverageWithHook {
// ...
public boolean customerWantsCondiments() {

return getUserInput().toLowerCase().startsWith("y");
}

}
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Template method?

Duck[] ducks = {
new Duck("Daffy", 8),
new Duck("Dewey", 2),
new Duck("Howard", 7),
new Duck("Louie", 2),
new Duck("Donald", 10),
new Duck("Huey", 2)

};

Arrays.sort(ducks, new Comparator <Duck >(){

@Override
public int compare(Duck arg0, Duck arg1) {

return new Integer(arg1.weight).compareTo(arg0.
weight);

}
});

No

public class Duck implements Comparable <Duck> {
String name;
int weight;

public Duck(String name, int weight) {
this.name = name;
this.weight = weight;

}

public String toString() {
return MessageFormat.format("{0} weighs {1}",

name, weight);
}

public int compareTo(Duck object) {
return new Integer(this.weight).compareTo(object

.weight);
}

}

Yes
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Java 8: With inline lambda (not Template method)

Arrays.sort(ducks , (arg0, arg1) -> new Integer(arg1.weight)
.compareTo(arg0.weight));
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Part VIII

Composite
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Breakfast 
menu

Coffee 
menu

Ham & 
eggs

Spam & 
eggs

Eggs & 
spam

Spam, 
spam & 

eggs

Coffee 
menu

Dark 
roast 

Coffee
Tea Espresso

Pizza 
menu

Coffee 
menu

Clam 
Pizza

Cheese 
Pizza

Diner 
menu

Waiter

printMenu()

print()

print()

print()

print()
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Client

Component

Composite

Leaf
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Composite: consequences

+ Allow us to treat composite objects
and individual objects uniformly

+ Allows arbitrarily complex trees

- Creates composite classes that violate
the principle of a single responsibility

- The composite cannot rely on
components to implement all methods



37 / 111

Part IX

Abstract Factory
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NY

Chicago

Fresh Clam

Mozzarella Cheese

Thin Crust Dough

Frozen Clam
Parmesan Cheese

Thick Crust Dough

Ingredients Pizza Store Clients

I Want a 
Cheese 
Pizza
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Abstract Products

Abstract Factory

Concrete Factory
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Clients
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Abstract factory: consequences

+ Isolates clients from concrete dependencies
+ Makes interchanging families of products easier
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Strategy – behavioural
I When related classes only differ in

behaviour
I You need different variants of an

algorithm
I An algorithm uses data the clients

don’t need to know
I A class uses conditionals for selecting

behavior

Abstract factory – creational
I A system should be independent of

how its products are created
I A system should be configured with

one of multiple families of products
I You want to provide a class library of

products, and only expose their
interfaces
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Design principles - Abstract Factory

I Encapsulate what varies
I Program to an interface, not to an implementation
I Favor composition over inheritance
I Classes should be open for extension but closed for modification
I Don’t call us, we’ll call you
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Part X

Dependency Injection
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Dependency injection: How?

1. Declare dependencies as constructor arguments of interface types
2. Register classes (components) in an Inversion-of-Control Container
3. Resolve the top-level object from an interface through the Container
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1. Dependencies
namespace DITest {

public class FancyClamPizza: IClamPizza {
private IClam clam;
private ICheese cheese;
public FancyClamPizza (IClam clam, ICheese cheese) {

this.clam = clam;
this.cheese = cheese;

}
public String ClamType() {

return String.Format("fancy {0}",clam);
}
public String Describe() {

return String.Format("fancy clam pizza with {0} and
{1}",ClamType(), cheese);

}
}

}
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2. Registration

namespace DITest{
public class IoCInstaller: IWindsorInstaller {

public void Install(IWindsorContainer container , IConfigurationStore
store) {

container.Register(Classes
.FromThisAssembly()
.InNamespace("DITest.NYStyle")
.WithServiceAllInterfaces());

container.Register(Classes
.FromThisAssembly()
.AllowMultipleMatches()
.InSameNamespaceAs <IoCInstaller >()
.WithServiceAllInterfaces());

}
}
}

Castle Windsor, http://www.castleproject.org

http://www.castleproject.org
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3. Resolution

var container = new WindsorContainer();
// adds and configures all components using

WindsorInstallers from executing assembly
container.Install(FromAssembly.This());

// instantiate and configure root component and all its
dependencies and their dependencies and...

var p = container.Resolve <ICheesePizza >();
Console.WriteLine(p.Describe());

// clean up, application exits
container.Dispose();
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Part XI

Singleton
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What about static methods?
public class Singleton {

private static Singleton instance = new Singleton();
private String name;
public String getName() {

return name;
}
public static void someOtherMethod(){

System.out.println("Hi there!");
}
private Singleton() {

try {
// Very expensive job indeed
Thread.sleep(100);

} catch (InterruptedException e) {
e.printStackTrace();

}
name = Math.random() > 0.5 ? "Jonas" : "Anders";

}
}

Our app takes forever to load if the Singleton class is part of it.
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// Thread that does not use the Singleton object
Thread t1 = new Thread(new StaticMethodInvocation());
// Thread that uses the Singleton object
Thread t2 = new Thread(new SingletonLookup());
t0 = System.nanoTime();
t1.start();
t2.start();
try {

t1.join();
t2.join();

} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}

someOtherMethod invoked
Singleton name: Anders
Singleton lookup took 1 003 348 000 ns
Static method invocation took 1 002 463 000 ns
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How about now?

private static Singleton instance;

public static Singleton getInstance() {
if (instance == null) {

instance = new Singleton();
}
return instance;

}

I How about now?
someOtherMethod invoked
Singleton name: Anders
Static method invocation took 899 000 ns
Singleton lookup took 1 003 348 000 ns
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What about threads?
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private Singleton() {
try {

// Very expensive job indeed
Thread.sleep(100);

} catch (InterruptedException e) {
e.printStackTrace();

}
name = Math.random() > 0.5 ? "Jonas" : "Anders";

}

private static final class SingletonLookup implements Runnable {
@Override
public void run() {

System.out.println(MessageFormat.format("Singleton name: {0}
",
Singleton.getInstance().getName()));

}
}
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public static void main(String[] args) {
Thread t1 = new Thread(new SingletonLookup());
Thread t2 = new Thread(new SingletonLookup());
t0 = System.nanoTime();
t1.start(); t2.start();
try {

t1.join();
t2.join();

} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
System.out.println("Singleton name after our threads have run:

"+Singleton.getInstance().getName());
}

Singleton name: Jonas
Singleton name after our threads have run: Anders Oops!
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public static synchronized Singleton getInstance() {
if (instance == null) {

instance = new Singleton();
}
return instance;

}

Singleton name: Anders
Singleton name: Anders
Singleton lookup took 1 003 340 000 ns
Singleton lookup took 1 003 286 000 ns
Singleton name after our threads have run: Anders

Woohoo!
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Singleton: consequences

- Violates several design principles!
+ Ensures single objects per class

I Saves memory
I Ensures consistency
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Singleton considered dangerous

I Encapsulate what varies
I Program to an interface, not to an implementation
I Favor composition over inheritance
I Classes should be open for extension but closed for modification
I Don’t call us, we’ll call you
I Depend on abstractions, do not depend on concrete classes
I Classes should only have one reason to change
I Strive for loosely-coupled design
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Part XII

Builder
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Director

Builder

Client
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Abstract Factory

Client receives a Factory
Client requests a product from Factory ⇒ Client receives an abstract product

Builder

Client initializes Director with Builder
Client asks Director to build
Client requests product from Builder ⇒ Client receives a builder-specific product
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Builder: consequences

+ Can control the way objects are
created

+ Can produce different products using
the same Director

- Not necessarily a common interface
for products

- Clients must know how to initialize
builders and retrieve products
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Part XIII

Adapter
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Adapter
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Class Adapter

Object Adapter
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Multiple back-end objects
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Multiple back-end methods
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public interface Duck {
public void quack();
public void fly();

}

public class TurkeyAdapter implements
Duck {

Turkey turkey;

public TurkeyAdapter(Turkey turkey) {
this.turkey = turkey;

}

public void quack() {
turkey.gobble();

}

public void fly() {
for(int i=0; i < 5; i++) {

turkey.fly();
}

}
}

public interface Turkey {
public void gobble();
public void fly();

}

public class DuckAdapter implements
Turkey {

Duck duck;
Random rand;

public DuckAdapter(Duck duck) {
this.duck = duck;
rand = new Random();

}

public void gobble() {
duck.quack();

}

public void fly() {
if (rand.nextInt(5) == 0) {

duck.fly();
}

}
}



77 / 111

Adapter: consequences

+ Isolates interface changes to the adapter class
- Class adapters require target interfaces or multiple inheritance in the language
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Part XIV

Bridge
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Abstraction == That which we (should) care about
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Bridge Strategy
Intent Decouple two class hierarchies (ab-

straction/implementation)
Allow for exchangeable algorithms

Collaborations The Bridge forwards requests to the
Implementor

The Context and Strategy collabo-
rate, passing data between them
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Bridge Adapter
Intent Decouple two class hierarchies (ab-

straction/implementation)
Convert an existing class to fit a
new interface

Applicability In a new system In an existing system
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Design principles - Bridge

I Encapsulate what varies
I Program to an interface, not to an implementation
I Favor composition over inheritance
I Classes should be open for extension but closed for modification
I Don’t call us, we’ll call you
I Depend on abstractions, do not depend on concrete classes
I Classes should only have one reason to change
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Bridge: consequences

+ Lets two class hierarchies with common superclasses vary independently
- If some implementation classes do not support an abstract concept, the
abstraction breaks
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Part XV

Observer
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RSS feeds
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Subject Concrete Observers
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Mediator vs Observer

An Observer lets one object (or event) talk to a set of objects.
A Mediator lets objects talk to each other through the Mediator.
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Design principles - Observer

I Encapsulate what varies
I Program to an interface, not to an implementation
I Favor composition over inheritance
I Classes should be open for extension but closed for modification
I Don’t call us, we’ll call you
I Depend on abstractions, do not depend on concrete classes
I Classes should only have one reason to change
I Strive for loosely-coupled design
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Part XVI

Chain of Responsibility
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Examples

I Logging
I Input management in GUI:s
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Chain of Responsibility: consequences

+ Provides the Observer with more control over invocation of targets
- A handler does not know if it will receive a message, depending on the behavior of
other handlers in the chain
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Part XVII

Memento
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Memento
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Optimize()
Abort()
GetState()
SetState()

iteration
current target value
current solution

Iterative Optimizer

Optimize()
Abort()
ResetOptimizer(SolverMemento)

- memento
- optimizer

Client

iteration
current target value
current solution

SolverMemento
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Mementos in GUIs - Undo/Redo
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Memento: consequences

+ Can externalize object state for later restoration within the lifetime of the object
+ Encapsulates access to the objects’ inner state
- Depending on implementation, access to private fields requires memento classes
as inner/friend classes to each domain class
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Part XVIII

Command
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Command
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Remote control
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Command: consequences

+ Allows extensions of commands
+ Decouples the execution from the specification of the command
- Bad design if not needed!
- May be confusing if it removes the receiver from responsibilities
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Part XIX

Finishing up
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Template method, strategy, or factory?

I When is the algorithm chosen?
Compile-time Template

Run-time Strategy, Factory
Template Often has several methods in the class, all implemented by the pattern
Strategy Usually only has one method in the class (execute or similar)
Factory Is a creational pattern (returns an object)
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Coursework

I Intro seminar
I Using design patterns lab (implement design in skeleton) + seminar (finished with

the lab and share solution 24h in advance)
I Design principles and Reading design patterns (next week)
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