TDDE45 - Lecture 2: Design Principles

Adrian Pop and Martin Sjélund

Department of Computer and Information Science
Link6ping University

2025-09-08

LINKOPING
II.“ UNIVERSITY

Part |

Single Responsibility Principle

LINKOPING
II.“ UNIVERSITY

3/48

Single Responsibility Principle - History

The term “Single responsibility principle” was made popular by Agile Software
Development, Principles, Patterns, and Practices (Martin 2003). SRP was coined a
few years earlier in the late 90s and he said “A class should have only one reason to
change”. There is a clarification in The Single Responsibility Principle (Martin 2014) of
what he meant by that.

LINKOPING
II.“ UNIVERSITY

4/48

Single Responsibility Principle

The single responsibility principle states
that every module, class, or function should
have responsibility over a single part of the
functionality provided by the software, and
that responsibility should be entirely
encapsulated by the class.

SINGLE RESPONSIBILITY PRINCIPLE

Just Because You Can, Doesn't Mean You Should

LINKOPING
II.“ UNIVERSITY

5/48

Violating the SRP using a God object

class Game {
// The game's state
State state;
// Every object moves 1 frame
void advanceGame() {
foreach (Enemy e : state.enemies)
/.
}
// Heads-up display shows the player's life total, etc
void renderHUD();
// Render the game from the player's point of view
void renderGame();

The God object has too many responsibilities. Basically a procedural program
disguised in OOP clothing.

LINKOPING
II." UNIVERSITY

6/48

First step towards the SRP

class Game {
// The game's state
State state;
HUD hud;
Scene scene;
public Game() {
state = new State();
hud = new HUD(state);
// Render the game from player's point of view
scene = new Scene(state.getPlayer(), state);
}
void loop() {
state.advanceGame() ;
scene.render();
hud.render();
1

LINKOPING
II." UNIVERSITY

Part I

Open-Closed Principle

LINKOPING
II.“ UNIVERSITY

8/48

Open-Closed Principle — History

{d

LINKOPING
UNIVERSITY

A module will be said to be open if it is still
available for extension. For example, it should
be possible to add fields to the data structures
it contains, or new elements to the set of
functions it performs.

A module will be said to be closed if [it] is
available for use by other modules. This

: OPEN CLOSED PRINCIPLE
assumes that the module has been given a o hs gyl v g o s

well-defined, stable description (the interface
in the sense of information hiding).

Meyer 1988

9/48

Open-Closed Principle

l l A class is closed, since it may be compiled, stored in a library, baselined, and
used by client classes. But it is also open, since any new class may use it as
parent, adding new features. When a descendant class is defined, there is no ’ ’
need to change the original or to disturb its clients.
Meyer 1988

In modern usage, code that adheres to the principle tends to use abstract classes or
interfaces instead. At the time inheritance existed but the concept of abstract classes
or interfaces had not quite been introduced in object-oriented programming.

LINKOPING
II.“ UNIVERSITY

Violating the Open-Closed Principle

class Shape {
Shape(int t) : t(t) {}
int t; // 1==Square, 2==Rectangle
}
class Rectangle : Shape {
int width; int height;
Rectangle(lnt width, int height)
: Shape (RECTANGLE) ,
width(width),
height (height) {}
int area() { return height * width; }
}
class Square :
int length;
Rectangle(int length)
: Shape(SQUARE), length(length) {}
int area() { return length * length; }

Shape {

}

II LINKOPING
{) UNIVERSITY

10/48

// Something using shapes
swicth (shape->t) {
case SQUARE:
return ((Squarex)shape)->area();
case RECTANGLE:
return ((Rectangle*)shape)->area();
}
// Equally bad
Rectangle *r = dynamic_cast<Rectangle>(shape)
Square *s = dynamic_cast<Square>(shape)
r 7 r->area() : s 7 s->area() : 0;
// How will this handle a new shape?

11/48

Adhering to the Open-Closed Principle

// Could be abstract class or interface
class Shape {

/* virtual */ int area();
}
class Rectangle : Shape {

int width; int height;

Rectangle(lnt width, int height)

: width(width),

// Something using shapes
shape->area();
// Or filtering
height (height) {} fo;each (auFo shape : shapes) {
int area() { return height * width; } if (dynamic_cast<Square>(shape) {
} sum += shape->area();

class Square : Shape { ¥

int length;
Rectangle(int length)
: length(length) {}
int area() { return length * length; }

}

}

II LINKOPING
{) UNIVERSITY

12/48

Open-Closed Principle without Object-Orientation?

abstract type Shape end
struct Rectangle <: Shape

width::Int
height::Int

end

struct Square <: Shape
length: :Int

end

area(s::Rectangle) ::Int = s.width * s.height
area(s::Square)::Int = s.length ~ 2

Multiple dispatch makes it easy to extend code. In Julia there typically exists an
informal interface you need to add functions for (which is not checked by the compiler).

LINKOPING
II.“ UNIVERSITY

Part Il

Liskov Substitution Principle

LINKOPING
II.“ UNIVERSITY

14/48

Liskov Substitution Principle - History

Initially introduced in a keynote address by Liskov 1987.

The original text talks about type systems in object-oriented programming at the time
(SmallTalk) and is rather hard to decipher what is the actual principle is. A later paper
has a rather short description of what is now called the Liskov Substitution Principle:

l l Subtype Requirement:
Let ¢(x) be a property provable about objects x of type T. ’ ’
Then ¢(y) should be true for objects y of type S where S is a subtype of T.
Liskov and Wing 1994

Note that this property cannot be automatically checked by a compiler since it is
related to semantics and expected behaviour of the object.

LINKOPING
II.“ UNIVERSITY

15/48

Liskov Substitution Principle

When we inherit from a class that is quite
similar to what we want, we need to decide
if we need a common ancestor
(abstraction) to the two or if the subtype
has proper subtype semantics of the parent.

LISKOV SUBSTITUTION PRINCIPLE

If It Looks Like A Duck, Quacks Like A Duck, But Needs Batteries - You
Probably Have The Wrong Abstraction

LINKOPING
II.“ UNIVERSITY

16 /48
Violating the Liskov Substitution Principle (1)

public class Square : Rectangle {
private int _length;
public override int height {

get {
return _length;
}
set {
public class Rectangle { _length = value;
public virtual int height { get; set; } }
public virtual int width { get; set; } }
int area() { return height * width; } public override int width {
} get {
return _length;
3
set {
_length = value;
3
}

II. LINKOPING }

UNIVERSITY

17/48

Violating the Liskov Substitution Principle (2)

Rectangle r = new Square();
r.height = 6;

r.width = 4;

// What is the area?

LINKOPING
II.“ UNIVERSITY

18/48

Violating the Liskov Substitution Principle (2)

Rectangle r = new Square();
r.height = 6;

r.width = 4;

// What is the area?

16

LINKOPING
II.“ UNIVERSITY

Part IV

Interface Segregation Principle

LINKOPING
II.“ UNIVERSITY

Interface Segregation Principle

l l Clients should not be forced to de-
pend upon interfaces that they do
not use.

Martin 1996

l l Make fine grained interfaces that
are client specific.
Robert C. Martin

LINKOPING
II.“ UNIVERSITY

INTERFACE SEGREGATION PRINCIPLE

You Want Me To Plug This In, Where?

20/48

21/48

Interface Segregation Principle — History

Xerox had created a new printer with many
functions. This had resulted in a huge God
class which supported these functions.

See also, Single Responsibility Principle.

LINKOPING
II." UNIVERSITY

Violation of the ISP

LINKOPING
UNIVERSITY

@ AbstractPrinter
@ Document;

void Print(Document d);

Document Scan();
void Fax(Document d);

©MultiFunctionPrinter

© BasicPrinter

void Print(Document d);

void Print(Document d);
Document Scan();
void Fax(Document d);

"Needs to add dummy Scan and Fax
functions that are not supported"

]

22/48

23/48

According to the ISP

@ Document; @ AbstractPrinter ® AbstractScanner

void Print(Document d);

@ AbstractFax

Document Scan();

N

© BasicPrinter @ AbstractMultiFunction

void Print(Document d);
T
[
[
[

void Fax(Document d);

Perhaps even extending the basic printer'ﬁ

\
\
\
\

©Mu|tiFunctionPrinter

void Print(Document d);
Document Scan();
void Fax(Document d);

LINKOPING
UNIVERSITY

24/48

Isn’t this (ISP) the same thing as the SRP?

Not quite. Go back and look at the solutions.

The ISP adds interfaces for the smaller parts so that clients do not see the parts they
are not interested in. Adhering to it is mostly a structural thing (moving code around).
For the SRP, the underlying problem may be bigger and you will tend to change the
code somewhat.

LINKOPING
II.“ UNIVERSITY

PartV

Dependency Inversion Principle

LINKOPING
II.“ UNIVERSITY

26 /48

Dependency Inversion Principle

Martin 1995 is an early work describing
dependency inversion.

The inversion here being inverting how you
write code: instead of creating client code
that uses a concrete implementation such
as a KeyboardReader, create a general
Reader interface and tie that to the
concrete implementation later on.
Dependency inversion also makes testing

. . . DEPENDENCY INVERSION PRINCIPLE
easier (lf yOU depend Only on an |nterface. Would You Solder A Lamp Directly To The Electrical Wiring In A Wall?

it is easy to use mocking).

LINKOPING
II.“ UNIVERSITY

Dependency Inversion Principle

It also generally says that interfaces having
few to no dependencies is good. This
means dependencies will rarely need to be
updated (because they do not depend on
implementation details).

Which in turn means your code which
depends on interfaces will not need to be
updated when the implementations of this
interface changes.

LINKOPING
II.“ UNIVERSITY

class Writer {
public:
virtual void Write(char) = 0;
3
class Reader {
public:
virtual char Read() = 0;
};
Example of an interface that is probably
not going to change.

27/48

Part VI

SOLID

LINKOPING
II.“ UNIVERSITY

29/48

Design Principles: SOLID

INTERFACE SEGH

SOLID Motivational Posters by Derick Bailey, used under CC BY-SA 3.0 US

II LINKOPING
{) UNIVERSITY

Part VII

Remarks

LINKOPING
II.“ UNIVERSITY

31/48

Principles + Problem = Pattern

LINKOPING
II.“ UNIVERSITY

32/48

Principles = SOLID + Some general tips

LINKOPING
II.“ UNIVERSITY

33/48

SOLID

Encapsulate what varies (S)
Program to an interface, not to an implementation (I, D)

Favor Composition over Inheritance (L)

Ll A

Don't call us, we'll call you (O)

LINKOPING
II.“ UNIVERSITY

34/48

Some more tips

Depend upon abstractions, not upon concrete classes (see 2).
Strive for loosely coupled designs between objects that interact (see 4).
Only talk to your friends.

Avoid global variables (constants can be fine), static methods (thread-safe code).

© o N oo

Simple, readable code is often favorable over strictly adhering to the design
principles.

LINKOPING
II.“ UNIVERSITY

35/48

Practice makes perfect (1)

Design is very open-ended problem with as many solutions as there are programmers.
You tend to learn what good design is after a few years of programming in a language.
Otherwise there are plenty of books available.

Note: These slides have a lot of references to works by Robert C. Martin since SOLID

is a part of the course. Other design principles and hints are also valid if you want a
different opinion.

LINKOPING
II.“ UNIVERSITY

36/48

Practice makes perfect (2)

What is clean code? Clean Code: A Handbook of Agile Software Craftsmanship
(Martin 2008):

Elegant and efficient (Bjarne Stroustrup)

Simple and direct (readable) (Grady Booch)

Can be read and enhanced by others (Dave Thomas)
Care of the code (Michael Feathers)

No duplication, one thing, expressiveness, tiny abstractions (Ron Jeffries)

vV v v vV VY

“when each routine you read turns out to be pretty much what you expected” (Ward
Cunningham)

LINKOPING
II.“ UNIVERSITY

37/48

Sometimes classes are unsuitable for some design patterns

Effective Java (Bloch 2017) chapter 4, item 19: Design and document for inheritance
or else prohibit it says that:

By now it should be apparent that designing a class for inheritance requires
great effort and places substantial limitations on the class. This is not a
decision to be undertaken lightly.

The best solution to this problem is to prohibit subclassing in classes that are
not designed and documented to be safely subclassed

LINKOPING
II.“ UNIVERSITY

38/48

Dependency injection

Not the same as (but easily confused with) dependency inversion, but follows good
design principles and allows for testability (see future lecture).

LINKOPING
II.“ UNIVERSITY

Part VIII

Overusing Design Patterns

LINKOPING
II.“ UNIVERSITY

40/48

FizzBuzz

Take a few minutes to think how you would solve this.

hwies,

41/48

FizzBuzz

We will now have a look at:
https://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition

hwies,

https://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition

Your solution is probably straight-forward Python code

for each number 1 to 100:
if number Y, 15 ==
print number, "fizzbuzz"

else if number %, 5 == O:
print number, "buzz"
else if number % 3 == 0:

print number, "fizz"
else:
print number

LINKOPING
II.“ UNIVERSITY

42/48

43 /48

Or perhaps something interesting half-readable written in C

#include <stdio.h>
char const * template[] = {
"hit,
"Buzz",
"Fizz",
"FizzBuzz"
};
const int __donotuseme3[] = { 2, 0, 0 };
const int __donotuseme5[] {1, 0, 0, 0, O };
#define TEMPLATE(z) (template[__donotuseme3[(z) 7 3] | __donotuseme5[(xz) 7 5]])
int main(void) {
int 1i;
for (i = 1; i <= 100; i++) {
printf (TEMPLATE(i), i);
putchar('\n');

3

return 0O;

ik,

src/main/java/com/seriouscompany/business/java/fizzbuzz /packagenamingpackage

_— inpi

LINKOPING

III

UNIVERSITY

Anpllcanon(nn(ex!m\der java
Constants.

factories

|— BuzzStrategyFactory. java

|— BuzzStringPrinterfactory. java
|— BuzzStringReturnerfactory. java
— P!

y.java
y-java

FizzStrategyFactory. java
FizzStringPrinterfactory. java
FizzStringReturnerFactory. java
IntegerIntegerPrinterfactory. java
IntegerIntegerStringReturnerFactory. java
LoopComponentFactory. java
NewLineStringPrinterfactory. java
NewLineStringReturnerFactory. java
NoFi2zNoBuzzStrategyFactory.
SystenQutFizzBuzz0utputStrategyFactory. java

[TTTTTTTTT

LoopCondition. java
LoopContext. java
LoopFinalizer. java
LoopInitializer.java
LoopRunner . java
LoopStep. java

- java

[TTTTT

rgg

arithmetics

— Integerbivider.java

= nauberlsm!zxp\eomommumbervumer.ma
parameter:

— Dehu\tfuzwnuwerumll’irm(er java
rinter:

— Buu?un(er.)ava

F— BuzzStringPrinter.java

}— FizzPrinter.java

|— FizzStringPrinter.java

F— IntegerIntegerPrinter.java

|— IntegerPrinter.java

|— NewLinePrinter.java
nestringPrinter. java
StandardFizzBuzz. java-

|— strategies

f— adapters
—F

L LoopC

— Bunstra(egy java
compar
— douh\lcanpnrntor
| | FirstIsLargerThansecondooubleConparator . java
| ' FirstIsSnallerThanSeconddoubleConparator . java
L integercomparator
IntegerForEqualityConparator. ma
|— ThreewayIntegerConparator. jav,
— Threzwayln(eger(umpansenkesu\l.java
F— constants
|— BuzzStrategyConstants. java
|— FizzStrategyConstants. java
L— NoFizzNoBuzzStrategyConstants. java
F— converters
primitivetypesconverters
|— DoubleToIntConverter. java
— IntToDoubleConverter. java
}— EnterpriseGradefizzBuzzSolutionStrategy. java
F— FizzStrategy.java
F— NoFizzNoBuzzStrategy. java
F— SinglestepOutputGenerationStrategy. java
F— Singlesteppayload. java
strs

sysumunmxzsuuoutpu(st rategy. java

— suusmngnemmer java

|— FizzstringReturner. ja

| Zntegerlmegerstringnemrner.;ava
— NewLineStringReturner. java

L visitors

|— FizzBuzzOutputGenerationContext. java
L FizzBuzz0utputGenerationContextVisitor. java..

25 directories, 89 files

-java

java

.\— interfaces

|— factories
|— FizzBuzzOutputStrategyFactory. java
}— FizzBuzzSolutionStrategyFactory.java
}— IntegerPrinterFactory.java
|— IntegerStringReturnerFactory.java
|— IsEvenlyDivisibleStrategyFactory.java
}— OutputGenerationContextVisitorFactory.jave
|— StringPrinterFactory.java
L— StringStringReturnerFactory.java
|— FizzBuzz.java

LoopContextStateManipulation. java
LoopContextStateRetrieval. java
LoopPayloadExecution. java
|— parameters

— FizzBuzzUpperLimitParameter. java
f— printers
DataPrinter. java
IntegerPrinter.java
StringPrinter. java

[MT§

7T

I
s
i

FizzBuzzExceptionSafeOutputStrategy. java

FizzBuzz0utputStrategy. java

FizzBuzzSolutionStrategy. java

IsEvenlyDivisibleStrategy.java

OutputGenerationStrategy.java

singleStepOutputGenerationParaneter. java
ingreturners

IntegerStringReturner. java
StringStringReturner. java

ors

[TTTTT

I
a
g

rm

[
Mg

OutputGenerationContext. java
OutputGenerationContextVisitor. java..

44 /48

45 /48

Some of the FizzBuzz strategies

<Gt G Sl Gl <G <
GNoFizzNoBuzzStrateny GBuzzStratoqy GFizzStratoqy G0utputGenerationstrategy
o) [Sper]
«isEromhOvisbla(nys0om v Dby oo ety -

o 7
“outputGonergtnSiratogy

<<ava itefaco>>
OlsEvenlyDivisibloStratogy

< SEvenyOisie()Bootean
-

/ [Srovoveniegorvame it

<<Java Gin
GSingleStepOutputGenerationStrategy es';“‘::;;:;‘_’;“ -

Tcontexts: List<OutputGeneratonConlext>
Vcontextistor: OutpuGanerationContextVisitor i(OuputGanaraton
myNowLinaPrintor; SringPrintor

»performGenerationForCurrontStop

LINKOPING
UNIVERSITY

46 /48

Eclipse

The Eclipse framework is huge with the ability to plugin almost anywhere. Eclipse
plugins tend to have several files of classes that extend from something without adding
any code, or empty classes. You need IDE support to navigate around such code if you
are need in a project

package org.eclipse.papyrus.moka.fuml. /* ... */;

public class ArrivalSignal { /* Yes, really an empty class */

3

LINKOPING
II.“ UNIVERSITY

References

[Blo17]

[Lis87]

[LW94]

[Mar03]

[Mar08]

Joshua Bloch. Effective Java. 3rd ed. Addison-Wesley, 2017. 1SBN:
9780134685991.

Barbara Liskov. “Keynote Address - Data Abstraction and Hierarchy". In:
SIGPLAN Not. 23.5 (Jan. 1987), pp. 17-34. 1sSN: 0362-1340. DOTI:
10.1145/62139.62141.

Barbara Liskov and Jeannette Wing. “A Behavioral Notion of Subtyping”. In:
ACM Trans. Program. Lang. Syst. 16.6 (Nov. 1994), pp. 1811-1841. 1SSN:
0164-0925. DOI1: 10.1145/197320.197383.

Robert C. Martin. Agile Software Development, Principles, Patterns, and
Practices. Prentice Hall, 2003. 1sSBN: ISBN 978-0135974445.

Robert C. Martin. Clean Code: A Handbook of Agile Software
Craftsmanship. 1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR,
2008. 1SBN: 9780132350884.

https://doi.org/10.1145/62139.62141
https://doi.org/10.1145/197320.197383

References

[Marl14]

[Mar95]
[Mar96]

[Mey88]

Robert C. Martin. The Single Responsibility Principle. 2014. URL:
https://blog.cleancoder.com/uncle-
bob/2014/05/08/SingleReponsibilityPrinciple.html.

Robert C. Martin. OO Design Quality Metrics. 1995. URL:
https://www.cin.ufpe.br/~alt/mestrado/oodmetrc.pdf.

Robert C. Martin. The Principles of OOD. 1996. URL:
http://butunclebob.com/ArticleS.UncleBob.Principles0f0od.

Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall,
1988. 1SBN: 0-13-629049-3.

https://blog.cleancoder.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html
https://blog.cleancoder.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html
https://www.cin.ufpe.br/~alt/mestrado/oodmetrc.pdf
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

	Single Responsibility Principle
	Single Responsibility Principle

	Open-Closed Principle
	Liskov Substitution Principle
	Interface Segregation Principle
	Dependency Inversion Principle
	SOLID
	Remarks
	Overusing Design Patterns
	References

