
TDDE41 Software Architectures
Architectural styles

Lena Buffoni
lena.buffoni@liu.se

mailto:lena.buffoni@liu.se

Lecture plan
• Abstraction levels in architecture
• Domain specific design
• Architectural patterns
• Architectural styles

Architecture vs. Generic Components
APRIL 6, 2021 3

A specific place
for every
component

Generic building
blocks

Comparable to top-down vs.
bottom-up design strategy?

Reality?

APRIL 6, 2021 4

At what abstraction level do we start?
• Solving a more general problem?

• Solving a specific problem?

• Separation of concerns

Example

Car Model (in Modelica)
Truck model

How can we generalize the
concepts?

Design process

Feasibility

Preliminary design

Detailed design

Planning

* Design Methods (Architecture),
Jones, 1970

linear

cyclic

parallel
Identify
feasible
concepts

Select an
alternative

Refine
alternative

Adapt to production
cycle

Domain specific software architectures
Rarely start from scratch – eg. New car model

Reference
architecture

Library of
components

Experience

A standard car
decomposition layout

A library of automotive
components

Knowing how to
combine thing so they
work

DSSA : representing domain knowledge

Example Represented

Domain dictionary Powertrain, gear change,
chassis

Information model A vehicle has a steering
wheel and 1+ wheels

ER diagram, Context
Information Diagrams

Feature model User can start car, user
can press accelerator
pedal, user can get
current speed

Use case diagrams,
Feature relationship
diagrams

Operational model Car starts at rest -> Engine
is started -> Gear is
changed…

Data flow, control flow,
state transition diagrams

Architectural patterns
Reminder:

– Are applicable in a given development context
– Constrain architectural design decisions that are

specific to a particular system within that context
– Elicit beneficial qualities in each resulting system

State-Logic-Display (Three-Tier)

Web shop GUI

Web server + shop
application

Product Database state

UI

business
logic

Web client

Web tier

EJB tier

Back end

4 tier break down

Tier architecture

• Structure the system as groups of components organized
based on type of component, runtime-purpose, execution
environment, …

• Communications with components in the same or
adjacent tier – may restrict kinds of communication

+ simplify modifiability
+ easy to ensure security
+ good for performance management

- high cost, high complexity

Model-View-Controller

Model
Buffers, text properties, markers, overlays

Controller

Lisp interpreter,
lisp code, lips

objects

Buffer access primitives

Buffer content
rendering

Window
manipulation

primitives

Keyboard input, mouse
gestures, menu selections

Lisp-level events
View

Frames, windows,
incremental display

update logic

Emacs and feature driven development

• Easy to add a feature/extend the tool
• Interactive
• Safe – bugs will not crash the editor
• Everything is on the same level of abstraction

(buffers, windows, your own extensions)

+ high cohesion, low coupling
- Consistency and maintainability

Sensor-Controller-Actuator

Logic:
Loop:

Read input values
Compute outputs
Update actuators

sensors

actuators

controller

Sensor-Controller-Actuator
• Typically scheduled on a clock
• Implicit interaction via the environment – a change

on the actuators will result in a change sensors will
detect

Clock

Algorithm

Computer

A/D, Sample D/A, ZOH

Plant

Architectural Styles
• An architectural style is a named collection of

architectural decisions that
– Applicable to recurring design problems
– Parametrized for different contexts

Program and Subroutines
• From classical imperative programming
• Small programs
• Does not scale or adapt well

Lunar Lander
Main

Get burn rate
from user

Environment
simulator

Display values to
user

Procedure
call

Object-oriented
• Good for complex dynamic data structures
• Close coupling to real world entities
• Harder to distribute
• Needs additional structuring

GUI

Spacecraft Environment
simulator

Procedure call

Layered
• Design separated into layers
• Each layer obtains services from the layer beneath

– Virtual Machines
– Client-Server

Virtualization

APRIL 6, 2021 21

• Abstract the hardware and infrastructure
• Allow a unified user experience
• Energy saving
• Secure
But:
• Overhead
• Compatibility limitations
• Shared resources

VMWare, VirtualBox, Xen …

Virtualization:
Portability on machine level

APRIL 6, 2021 22

Hardware

Host OS

Hypervisor (type 2)

Guest
OS

Guest
OS

Guest
OS

App A App B App C

Managing
resource
virtualization
and distribution

Virtualization:
Xen Architecture for distributed computing

APRIL 6, 2021 23

Highest privilege level,
we separate the
management logic, to
reduce impact of
errors

Paravirtualization
• Making changes to the program or operating system

to optimize its performance
• Remove features that are difficult to virtualize and

replace them with paravirtual features

• Eg: memory handling Frontend
driver

Backend
driver

Ring buffer

Implement familiar
interface for
operating system

Connects to real
hardware

Containerization:
Portability on OS/application level

APRIL 6, 2021 25

Hardware

Host OS

Container Engine

App A App B App C

Containerization

APRIL 6, 2021 26

• Lightweight
• Portability
• Less overhead
• Breakdown into smaller chunks
But
• Less isolation
• No hardware virtualization
• Still… overhead

Docker, Rocket…

Complementary
approaches?

Emulation vs virtualization

• Virtualized instructions run directly on the processor
• Emulated instructions are translated before

execution

Client-server: a form of virtualization

Server:
Game State, Game Logic,
Environment SImulation

RPC (procedure call +
distributor)

Client 1:
Get Info, Send Actions,

Graphics Processing

RPC (procedure call +
distributor)

Client 2:
Get Info, Send Actions,

Graphics Processing

RPC (procedure call +
distributor)

Client 3:
Get Info, Send Actions,

Graphics Processing

Data-flow
• Batch-Sequential
• Pipe and filter
• Rule-based

Knowledge base

Inference Engine

User Interfaces

Procedure call

Data access

Interpreter
Dynamic parsing and execution of commands
(eg: Excel)
Mobile code
Used for distributed data processing
+ Dynamic
+ Evolutive
- Overhead
- Memory management

Peer-to-peer

• Network of peers
• Loosely coupled
• Autonomous
• Decentralized resources
• Requests propagate until information is discovered

or threshold is reached

+ Scalable
+ Robust
- Latency
- Security

Peer-to-peer architecture

Super
node

A

Super
node

C

Super
node

B

P7

P8

P1

P2

P3
P4

P6

P5

Skype - mixed client/server and P2P
• Download a Skype client
• Register and log in to server
• Get provided with a supernode address
• Queries and voice calls over the supernode
• Location of supernodes determined based on

topology and machine characteristics
• Any peer can become a supernode

Skype – architecture properties
• Mixed model handles the discovery problem
• Scalable and robust
• Supernodes are chosen to maximize performance
• As many supernodes can be created as necessary
• Encryption protocol to ensure privacy
• Restriction to Skype controlled clients reduces risk

for malaware

Distributed paradigms
• Distributed objects
• CORBA
• MOM

Not part of the lecture

The stub & skeleton proxy pattern

APRIL 6, 2021 36

Stub Skeleton

Application
In C++

Client 1
in Java

Stub

Client 2
In Python

Call

Client-side
proxy of the
component

Language adaptation
local
version

Message-Oriented Middleware (MOM)
• Loosely coupled
• Asynchronous
• Used to connect independent applications

Sender ReceiverQueue
ReceiverSender

Message
handling
services

• Best effort
• Persistent
• Transactional
+ Clustering
+ Two-way messaging

Rabbit MQ

consumer
producer

application
publish consume

queque

exchange

routes

• 4 communication models : direct,
fanout, topic, headers

• producers send to the exchange then
the queue

• multi-platform

channel.exchange_declare(exchange='logs',
exchange_type='fanout')

Event-based

• Independent
• Concurrent
+ scalable
+ distributed
+ supports heterogeneity
- no guarantee events will be processed

Java beans – main aspects

APRIL 6, 2021 53

• Events Beans can announce that their instances are potential
sources or listeners of specific types of events. An assembly tool
can then connect listeners to sources.

• Properties Beans expose a set of instance properties by means
of pairs of getter and setter methods.

• Introspection An assembly tool can inspect a bean to find out
about the properties, events, and methods that a particular bean
supports.

• Customization Using the assembly tool, a bean instance can be
customized by setting its properties.

• Persistence Customized and connected bean instances need to
be saved for reloading at the time of application use.

Events

APRIL 6, 2021 54

• Event (MouseOver)

• Event source – generates
an event (mouse hoovers
over a button)

• Event listener - triggers
some behavior when an
event is detected (button is
highlighted)

public void add<Event>Listener(<Event>Listener a)

Service Oriented Architectures
A form of application integration middleware
Goals:
• Interoperability
• Distributed systems
• Standardization (?)

Web server

Online clothing
store

(J2EE/IOP/JMS)

Supplier 1
(Linux/EJB)

Merchant 1
(Linux/EJB)

Supplier 2
(Windows

Server/.NET)

Shipper 1
(VMS)

Chrome
client

IPhone app
client

…
… …

… …

…
Shipper 2

(Solaris/CORBA)

User
Autentification

Bank 1
(mVS/CICS)

Paypal
(Braintree)

Encapsulation

APRIL 6, 2021 58

• All access through API
• Explicit API definitions
• No hidden interactions
• Explicit data passing
• Context-free calls

A
P
I

Service logic

Autonomy

APRIL 6, 2021 59

• Replaced, managed and deployed independently
• Responsible for their own security

A
P
I

Service logic
A
P
I

Service logic

Loose coupling

APRIL 6, 2021 60

Low dependency/connection level in terms of
– Time
– Location
– Type
– Version
– Cardinality
– Lookup
– Interface

Contract driven

APRIL 6, 2021 61

• Not class driven
• Description based
• Loose coupling = few

assumptions on
implementation

Service
Impleme
ntation

API

ex: RMI is
implementation
dependent – not SO

Interoperability and standards

APRIL 6, 2021 62

• Relies on open standards not proprietary APIs
• All message formats are described using an open

standard, or a human readable description
• The semantics and syntax for additional information

necessary for successful communication, such as
headers for purposes such as security or reliability,
follow a public specification or standard

• At least one of the transport (or transfer) protocols
used to interact with the service is a (or is accessible
via a) standard network protocol

Vendor & Technology independent

APRIL 6, 2021 63

To ensure the utmost accessibility (and therefore, long-
term usability), a service must be accessible from any
platform that supports the exchange of messages
adhering to the service interface as long as the
interaction conforms to the policy defined for the
service.

Web-services

APRIL 6, 2021 64

• A realization of the SOA paradigm
• Relies on XML and the Web for implementation
• Attention: a web service is not necessarily SOA

compliant!

client

Service
provider

XML format

APRIL 6, 2021 65

• W3C standard
• Open & extensible
• Structured
• Readable

But
• Heavy
• No semantics

Example
APRIL 6, 2021 66

<breakfast-menu>
<food>

<name>Belgian Waffles</name>
<price>$5.95</price>
<description>

two of our famous Belgian
Waffles

with plenty of real maple syrup
</description>
<calories>650</calories>

</food>
<food>

<name>Strawberry Belgian
Waffles</name>

<price>$7.95</price>
<description>

light Belgian waffles covered with
strawberries and whipped cream

</description>
<calories>900</calories>

</food>
</breakfast-menu>

We need some
way to define
XML structure

XML Schema : type definition

APRIL 6, 2021 67

<xs:element name="item" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>
<xs:element name="title" type="xs:string"/>
<xs:element name="note" type="xs:string"

minOccurs="0"/>
<xs:element name="quantity"

type="xs:positiveInteger"/>
<xs:element name="price" type="xs:decimal"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<item>
<title>Empire Burlesque</title>
<note>Special Edition</note>
<quantity>1</quantity>
<price>10.90</price>

</item>

Item instance

Item type
definition

Simple Object Access Protocol (SOAP)

APRIL 6, 2021 68

• XML based message exchange protocol
• Used for remote procedure calls (RPC)
• Platform and language independent
• Uses predefined channels (HTTP, SMTP, TPC)

SOAP message structure
APRIL 6, 2021 69

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://www.w3.org/2003/05/soap-envelope/"
soap:encodingStyle="http://www.w3.org/2003/05/soap-
encoding">

<soap:Header>
...
</soap:Header>

<soap:Body>
...

<soap:Fault>
...
</soap:Fault>

</soap:Body>

</soap:Envelope>

Optional, application specific information

Mandatory, define the message as a soap
envelope

Optional, contains the actual message, can
contain error information

SOAP example

APRIL 6, 2021 70

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://www.w3.org/2003/05/soap-
envelope/"
soap:encodingStyle="http://www.w3.org/2003/05/so
ap-encoding">

<soap:Body>
<m:GetPrice

xmlns:m="http://www.w3schools.com/prices">
<m:Item>Apples</m:Item>

</m:GetPrice>
</soap:Body>

</soap:Envelope>

SOAP Pros & Cons

APRIL 6, 2021 71

+W3C Recommendation (standard)
+ Implements RPC
+ Lightweight, extensible, neutral

- Untyped user data, types to encode in the message -
Interpretation of SOAP messages required
- High overhead / low performance
- Serialization by value and not by reference

WSDL (Web Services Description Language)

72

• WSDL is an XML format for describing network
services as a set of endpoints operating on messages
containing either document-oriented or procedure-
oriented information.

• Used to describe:
– a service for its clients
– a standard service for WS implementers

• W3C standard

WSDL Interface Definition

73

• defines services as collections of network endpoints,
or ports

• the abstract definition of endpoints and messages is
separated from their concrete network deployment or
data format bindings

• messages, which are abstract descriptions of the
data being exchanged, and port types which are
abstract collections of operations

74

WSDL interface structure<definitions>

<types>
data type definitions........

</types>

<message>
definition of the data being

communicated....
</message>

<portType>
set of operations......

</portType>

<binding>
protocol and data format

specification....
</binding>

</definitions>

APRIL 6, 2021 75Title/Lecturer

WSDL example : Glossary

<message name="getTermRequest">
<part name="term" type="xs:string"/>

</message>

<message name="getTermResponse">
<part name="value" type="xs:string"/>

</message>

<portType name="glossaryTerms">
<operation name="getTerm">
<input message="getTermRequest"/>
<output message="getTermResponse"/>

</operation>
</portType>

WSDL Binding to SOAP

APRIL 6, 2021 76Title/Lecturer

• binding = associating protocol or data format
information with an abstract entity like a message,
operation, or portType

• SOAP specific elements include:
– soap:binding
– soap:operation
– soap:body

Binding example

APRIL 6, 2021 77Title/Lecturer

binding of one-way operation over SMTP
using a SOAP Header

<binding type="glossaryTerms" name="b1">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/

http" />
<operation>
<soap:operation

soapAction="http://example.com/getTerm"/>
<input><soap:body use="literal"/></input>
<output><soap:body

use="literal"/></output>
</operation>

</binding>

WSDL Pros & Cons

APRIL 6, 2021 78Title/Lecturer

WSDL abstracts from underlying
– Protocol (Binding to HTTP, SOAP, MIME, IIOP…)
– Component model (Mappings to CORBA, EJB,

DCOM, .NET …)
– Supported by many tools (Visual Studio, Eclipse,

…)
But:
• No inheritance on WSDL
• Not recursively composable

JAX-WS
• No need to manually format SOAP messages
• Converts API calls and responses from/to SOAP
• Provides WSDL mappings

@WebService
public class Hello {
private String message = new String("Hello, ");
@WebMethod
public String sayHello(String name) {
return message + name + ".";
}
}

Categorization and discovery

APRIL 6, 2021 80Title/Lecturer

• Providers need a way to propose their services
• Clients need a way to find available services

• UDDI (Universal Description, Discovery, and
Integration) is an XML-based registry for businesses
worldwide to list themselves on the Internet

• Like a telephone book for services

UDDI

APRIL 6, 2021 81Title/Lecturer

• a specification for a distributed registry of web
services.

• platform-independent, open framework.
• can communicate via SOAP, CORBA, Java RMI

Protocol.
• Uses WSDL to describe interfaces to web

services.

APRIL 6, 2021 82Title/Lecturer

UDDI Example
83

<tModel authorizedName="..." operator="..." tModelKey="...">
<name>HertzReserveService</name>
<description xml:lang="en">

WSDL description of the Hertz reservation service interface
</description>

<overviewDoc>
<description xml:lang="en">

WSDL source document.
</description>
<overviewURL>

http://mach3.ebphost.net/wsdl/hertz_reserve.wsdl
</overviewURL>

</overviewDoc>

<categoryBag>
<keyedReference tModelKey="uuid:C1ACF26D-9672-4404-9D70-

39B756E62AB4"
keyName="uddi-org:types" keyValue="wsdlSpec"/>

</categoryBag>
</tModel>

SOA and Security

APRIL 6, 2021 84Title/Lecturer

• Confidentiality, Integrity, Authenticity: XML
Encryption, XML Signature.

• Message-Level Security: WS-Security.
• Secure Message Delivery: WS-Addressing, WS-

ReliableMessaging.
• Metadata: WS-Policy, WS-SecurityPolicy.
• Trust Management: SAML, WS-Trust, WS-

SecureConversation, WS- Federation.
• Public Key Infrastructure: PKCS, PKIX, XKMS

Summary and Context

APRIL 6, 2021 85Title/Lecturer

Summary of Web service standards

XML

Messaging

Reliable
messaging Security Transactions

Metadata

Use of styles and patterns

• Styles restrict focus -> reduce areas of concern
• Easier to use code generation and frameworks (eg:

IDL)
• Communication is more efficient
• Combining patterns - multiple benefits of several

patterns
eg: RESTful services

SOAP vs RESTful web services
• Key abstraction of information is a resource, named

by a URL
• Resources = sequence of bytes + metadata to

interpret the bytes
• Context-free
• Components perform only a small set of well defined

methods
• Replication and caching
• Intermediaries

Facebook case-study

App
Data

FB Data

App
Logic

App
Display Browser

FBI API

Privacy

S_REQUEST

App Infrastructure

FB Infrastructure

Providing FB integration with
third party applications

FB as a service

HTLM, JS,
CCS

Facebook case-study
• Data-centric application
• FB provides a standard API
• Accessing data -> multiple requests -> overhead
• FQL : a Facebook query language

Facebook case-study

App
Data

FB Data

App
Logic

App
Display Browser

FBI API

PrivacyS_REQUEST

App Infrastructure

FB Infrastructure

Integrating 3rd party app into
the FB platform

- Interpreting instructions
- Using FB data without

accessing it

FBML
interpreter

FB Logic FB
Display

FBML

Receiver
HTLM, JS,
CCS

Unprecedented design

How do we model in new contexts?

Summary

Design
Patterns

Styles

Architectural
Patterns

Domain
Specific SW

Architectures

scope

deep

shallow

do
m

ai
n

broad limited

