
TDDE41	Software	Architectures
Design	and	Visualisation

Lena	Buffoni	
lena.buffoni@liu.se



Lecture	plan

• Architectural views and modeling 
• Visualization formalisms and tools
• Designing in an agile context



Views:	A	building	model

Electricians	
view

Realtors
view

Tax	
collectors
view

Renters
view

Builders	
view

Designers	
view Each	view	concentrates	on	modeling	

specific	aspects



Views:	a	software	model
• Logical 
• Physical
• Deployment
• Concurrency
• Behavioral

Possible	inconsistencies:	
behavioral:	the	system	should	be	robust
physical:	the	system	is	implemented	with	a	single	server



Example:	Lunar	Lander
Landing 

radar
DSKY 
console

Thruster 
control …

…

Middleware Bus

Ip StackSpac Link

Ground	System

Physical

Logical	
view

*image	from	
https://gatewayspaceport.com



Natural	language	&	informal	notations
• The lunar lander has three components: a data 

storage, a calculation unit and a UI
• The data storage contains height, velocity and fuel 

data and current simulator time
• The calculation component gets height, velocity and 

fuel from data storage, updates them with respect to 
burn rate and returns them

• The UI displays the current status and information



Pros	and	Cons
+ good for non functional properties
+ a good complement to more formal specifications

But

- Ambiguous
- Difficult to get an overview of the problem
- Often incomplete



UML	– component	diagram

IDataStore

IDataStore

IDataStore
ICalculation

ICalculation

:User	Interface

:Calculation

:Data	Store



UML	- statecharts

Displaying	Lander	
State

Getting	burn	rate	
from	user

Calculating	new	
actuator	values

[user quits]

[done]

[input invalid]

[not done]

[input valid]



UML	– sequence	diagram

:	User	Interface :	Calculation :	Data	Store

calculate

Get values

Store new values

New values Done

Values

calculate

Display values

Enter burn rate
Prompt user



Pros	and	Cons
+ Can express a lot of concepts
+ Extensive tool support
- Open to ambiguities

-> Good practice is to develop specialized profiles



Architecture	Analysis	and	Design	Language	
(AADL)
• Initially for modelling avionic systems
• Language for system architectures
• Component based: type and implementation



AADL:	lunar	lander	calculation	system
system calculation_type

features
network : requires bus access lan_bus.calculation_to_datastore;
request_get : out event port;
response_get : out event port;
request_store : out event port lander_state_data;
response_store : in event port;

end calculation type;

system implementation calculation_type.calculation
subcomponents

the_calculation_processor : processor calculation_processor_type;
the_calculation_process: process calculation_process_type.one_thread;

connections
bus acces network -> the_calculation_processor.network;
event data port response_get -> the_calculation_process.response_get;
…

properties
Actual_Processor_Binding => reference the_calculation_processor
applies to the_calculation_process;

end calculation_type.calculation;



Pros	and	cons

+ Supports different types of analysis
+ Good for critical systems

- Complex



xADL:	Extensible	XML-based	ADL
• Promote feature reuse
• Facilitate addition of new features
• Relies on XML for extensibility
• A composition of different schemas covering different 

aspects
• Supported by a variety of tools for visualization and 

consistency verification
• Provides a xADL data binding library in Java



Lunar	Lander	in	xADL
xArch{

archStructure{
id = “lunarlander”;
description = “Lunar Lander”;

component{
id = “calculation”;
description = “Calculation”;
interface{
id = “calculation.getValues”;
description = “Calculation Get Values interface”;
direction = “out”;}
…}
link{
id = “calculation-to-datastore-getvalues”;
decription = “calculation to data store get values”;
point{

anchorOnInterface{
type = “simple”;
href = “#datastore.getValue”
}}

…

}}



Static	and	dynamic	aspects
• Static: do not involve behaviors during runtime

• Dynamic: changes to the structure during runtime –
eg: component failures, dynamic connections



Visualization	types

xADL
description

graphical

text hybrid

UML	diagrams



UML:	Papyrus



x:ADL - ArchStudio



Common	issues

• Same symbol – different meaning
• Differences without meaning
• Decorations without meaning
• Borrowed symbol – different meaning

Client	1
Client	2

Client	3

Server

Coordinating	
visualizations!



Choosing	a	visualisation
• Fidelity
• Consistency
• Comprehensibility
• Dynamism
• View coordination
• Aesthetics
• Extensibility Attention:	Distinction	between	language	

features	and	editor	features



Discussion

How do agile methods impact the architecture 
development process?



Agile	methods	and	architecture
How to document something that is constantly 
changing?

eg: a browser automatically downloading plugins

- Document what is true about all versions of the system
- Document how the system is allowed to change



Agile	working	methods

• Agile =/= no templates
• Add information on a “as needed” basis
• Do not spend time filling in information not needed 

now



Discussion

Architectural design in uncharted territory?



Summary
Documentation is needed to:
• Communicate with stakeholders
• Analyze the architecture
• Learn from the architecture



www.liu.se

The	End.
Questions?


