
The Great RESTfulness test Fredriksson, Henrik and Olaussen, Jonas
TDDE41, VT2019

Result
The RESTfulness test framework
The table below is the proposed framework for RESTfulness testing
incorporating different perspectives from the literature study. Question 1, 2
and 7 are aimed to capture more qualitative values aimed at the developer
experience, while the remaining questions are of a quantitative nature. Each
question consists of a value and weight which multiplied together generates
the result. The maximum average score is 9,61.

The sample web application
The developed sample web application contains a variety of functionality
from the tested APIs, such as location search, weather info, and astronomy
pictures. The web application can be found in this Git repo: bit.ly/2Wn2T30

The RESTfulness test framework applied on the chosen APIs
The testing conducted on the selected APIs resulted in the following results,
that can be seen in the figure below.

Conclusion
The conclusion is that the proposed framework can be used to
successfully evaluate to what extent an API follows the REST
architecture principles. It contains a clear connection between theory
and practice but is not perfect and free from weaknesses. It is important
to acknowledge that the questions in the framework in practice are
somewhat subjective, which is derived from the fact that the
implementation of the REST architecture principles themselves to an
extent are subjective and depend on the circumstances and the
experiences from the developer. This is what makes the automation of
the test framework a challenge. This also emphasizes that the REST
architecture principles should be seen as principles or as overall
guidelines, rather than strict implementation rules. Something that in turn
affects the evaluation of to what extent APIs align with them.

Nr Question Value format Value Weight Result

1 How up to date is the documentation? Range 1 to 7 1,5

2 How would you rate the developer experience? Range 1 to 7 2

3 How many endpoints have proper error handling? % 10

4 Does the API align with the principal of client and server? 1 or 0 10

5 How many endpoints can be called without state? % 10

6 How many endpoints implies the cacheable nature of the
data?

% 8

7 How would you rate the uniformity of API calls and
responses?

Range 1 to 7 2

8 Does the API include the feature of Code-On-Demand? 1 or 0 3

9 How many endpoints have incorporated the feature of
HATEOAS?

% 7

Average

Research Question
How to evaluate to what extent application programming interfaces are
aligned with the REST architecture principles including the HATEOAS
principles from the human developer perspective?

Method
In order to answer the research question, a literature study was
conducted on the REST architecture principles and on literature
surrounding what constitutes a well-implemented API in general. Based
on the literature study, a framework for evaluating to what extent an API
follows the REST architecture principles were developed. In addition, a
sample web application incorporating Google Maps, Youtube, NASA,
and OpenWeatherMap APIs was created in order to evaluate the viability
of the proposed framework.

Background
The REST architecture principles
R. T. Fielding defines the REST architecture principles as follows
(Fielding, 2000):

● Client-server: Separates the user interface from the data storage
and/or processing power.

● Stateless: Implies that a request must contain all necessary
information without utilizing any stored context on the server.

● Cache: Labeling API calls cacheable improves network efficiency.
● Uniform Interface: Simplifies and unifies API interfaces.
● Layered System: Hierarchical layers in the architecture improving

scalability.
● Code-On-Demand: An optional constraint that allows code to be

downloaded and executed directly.
● HATEOAS: The response to the client includes additional dynamic

hypermedia, links, to navigate between functionality offered by
the server. Thus, reducing the information needed to utilize the
API (Fielding, 2008).

Defining a good API
F. Doglio discusses key features that define a good API and relates them
to the REST architecture principles. Listing the following features as
necessary for a well-implemented API: developer-friendliness,
extensibility, up-to-date documentation, proper error handling,
providing multiple SDK/libraries, security, and scalability (Doglio, 2018).

insights regarding how important the different factors of the framework
are in relation to each other, as well as in insights regarding weaknesses
of the framework. A weakness with the methodology is arguable that
four tested APIs are not enough to profoundly evaluate the framework.

The RESTfulness test framework
The proposed testing framework is considered a successful tool for
evaluating different APIs in regards to RESTfulness. By examining
question 1, 2 and 7 it is possible to evaluate the developer experience
compared to the provided literature (Doglio, 2018). The remaining
questions make it possible to analyse the factors considering the
RESTfulness of the API (Fielding, 2000; Fielding, 2008).

A weakness with the framework is that some questions are to an extent
subjective. It can for example be challenging to evaluate whether a
certain API call has proper error handling or not, since API calls often
have error handling to some extent but not fully for all variables provided.
Another subjective question is regarding how many endpoints that
implies the cacheable nature of the data. None of the four tested APIs
provided explicit info regarding if the data response was cacheable or
not.

It is also subjective to an extent how important the different factors are
in the test and thus what weight each question should have. As a result,
the weights could be adjusted by the tester to a preferred weight.

Furthermore, the resulting scores obtained when applying the framework
on the tested APIs were similar, close to the maximum average. This
could indicate flaws in the framework but are more likely due to the good
development quality of the tested APIs.

Further Research
To examine the viability of the framework further, a larger set of APIs
could be used. Automation possibilities, both fully and semi-automated
testing, could be further explored since automated tests based on the
framework would facilitate large scale API testing, as mentioned by
(Hamza et.al., 2018). Due to the temporal nature of this study, this was
not expanded on.

Literature study Development of
framework

Usage on live
APIs Discussion

Methodology
The development of the sample web application resulted in, as expected,
that experience was gained with the different APIs tested. It also resulted in

