
Chapter 2
Application Layer

A note on the use of these PowerPoint slides:
We’re making these slides freely available to all (faculty, students,
readers). They’re in PowerPoint form so you see the animations; and
can add, modify, and delete slides (including this one) and slide content
to suit your needs. They obviously represent a lot of work on our part.
In return for use, we only ask the following:

▪ If you use these slides (e.g., in a class) that you mention their
source (after all, we’d like people to use our book!)

▪ If you post any slides on a www site, that you note that they are
adapted from (or perhaps identical to) our slides, and note our
copyright of this material.

For a revision history, see the slide note for this page.

Thanks and enjoy! JFK/KWR

 All material copyright 1996-2020
 J.F Kurose and K.W. Ross, All Rights Reserved

Application Layer: 2-1

Computer Networking: A
Top-Down Approach
8th edition n
Jim Kurose, Keith Ross
Pearson, 2020

Application layer: overview

▪ Principles of network
applications

▪ Web and HTTP

▪ E-mail, SMTP, IMAP

▪ The Domain Name System
DNS

▪ P2P applications

▪ video streaming and content
distribution networks

▪ socket programming with
UDP and TCP

Application Layer: 2-2

Some network apps

▪ social networking

▪ Web

▪ text messaging

▪ e-mail

▪ multi-user network games

▪ streaming stored video
(YouTube, Hulu, Netflix)

▪ P2P file sharing

▪ voice over IP (e.g., Skype)

▪ real-time video conferencing
(e.g., Zoom)

▪ Internet search

▪ remote login

▪ …

Q: your favorites?

Application Layer: 2-4

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

application

transport

network

data link

physical

application

transport

network

data link

physical

application

transport

network

data link

physical

Creating a network app

write programs that:

▪ run on (different) end systems

▪ communicate over network

▪ e.g., web server software
communicates with browser software

no need to write software for
network-core devices

▪ network-core devices do not run user
applications

▪ applications on end systems allows
for rapid app development,
propagation

Application Layer: 2-5

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

Client-server paradigm

server:
▪ always-on host
▪ permanent IP address
▪ often in data centers, for scaling

clients:
▪ contact, communicate with server
▪ may be intermittently connected
▪ may have dynamic IP addresses
▪ do not communicate directly with

each other

▪ examples: HTTP, IMAP, FTP
Application Layer: 2-6

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

Peer-peer architecture

▪ no always-on server
▪ arbitrary end systems directly

communicate
▪ peers request service from other

peers, provide service in return to
other peers
• self scalability – new peers bring new

service capacity, as well as new service
demands

▪ peers are intermittently connected
and change IP addresses
• complex management

▪ example: P2P file sharing
Application Layer: 2-7

Processes communicating

process: program running
within a host

▪within same host, two
processes communicate using
inter-process communication
(defined by OS)

▪processes in different hosts
communicate by exchanging
messages

▪ note: applications with
P2P architectures have
client processes &
server processes

client process: process that
initiates communication

server process: process
that waits to be contacted

clients, servers

Application Layer: 2-8

Sockets
▪ process sends/receives messages to/from its socket

▪ socket analogous to door

• sending process shoves message out door

• sending process relies on transport infrastructure on other side of
door to deliver message to socket at receiving process

• two sockets involved: one on each side

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Application Layer: 2-9

Addressing processes

▪ to receive messages, process
must have identifier

▪ host device has unique 32-bit
IP address

▪Q: does IP address of host on
which process runs suffice for
identifying the process?

▪ identifier includes both IP address
and port numbers associated with
process on host.

▪ example port numbers:
• HTTP server: 80

• mail server: 25

▪ to send HTTP message to
gaia.cs.umass.edu web server:
• IP address: 128.119.245.12

• port number: 80

▪more shortly…

▪ A: no, many processes
can be running on
same host

Application Layer: 2-10

An application-layer protocol defines:

▪ types of messages exchanged,

• e.g., request, response

▪message syntax:

• what fields in messages &
how fields are delineated

▪message semantics

• meaning of information in
fields

▪ rules for when and how
processes send & respond to
messages

open protocols:

▪ defined in RFCs, everyone
has access to protocol
definition

▪ allows for interoperability

▪ e.g., HTTP, SMTP

proprietary protocols:

▪ e.g., Skype, Zoom

Application Layer: 2-11

What transport service does an app need?

data integrity
▪ some apps (e.g., file transfer,

web transactions) require
100% reliable data transfer

▪ other apps (e.g., audio) can
tolerate some loss

timing
▪ some apps (e.g., Internet

telephony, interactive games)
require low delay to be “effective”

throughput
▪ some apps (e.g., multimedia)

require minimum amount of
throughput to be “effective”

▪ other apps (“elastic apps”)
make use of whatever
throughput they get

security
▪ encryption, data integrity,

…

Application Layer: 2-12

Transport service requirements: common apps

application

file transfer/download

e-mail

Web documents

real-time audio/video

streaming audio/video

interactive games

text messaging

data loss

no loss

no loss

no loss

loss-tolerant

loss-tolerant

loss-tolerant

no loss

throughput

elastic

elastic

elastic

audio: 5Kbps-1Mbps

video:10Kbps-5Mbps

same as above

Kbps+

elastic

time sensitive?

no

no

no

yes, 10’s msec

yes, few secs

yes, 10’s msec

yes and no

Application Layer: 2-13

Internet transport protocols services

TCP service:

▪ reliable transport between sending
and receiving process

▪ flow control: sender won’t
overwhelm receiver

▪ congestion control: throttle sender
when network overloaded

▪ connection-oriented: setup required
between client and server processes

▪ does not provide: timing, minimum
throughput guarantee, security

UDP service:

▪ unreliable data transfer
between sending and receiving
process

▪ does not provide: reliability,
flow control, congestion
control, timing, throughput
guarantee, security, or
connection setup.

Q: why bother? Why
is there a UDP?

Application Layer: 2-14

Internet applications, and transport protocols

application

file transfer/download

e-mail

Web documents

Internet telephony

streaming audio/video

interactive games

application
layer protocol

FTP [RFC 959]

SMTP [RFC 5321]

HTTP 1.1 [RFC 7320]

SIP [RFC 3261], RTP [RFC

3550], or proprietary

HTTP [RFC 7320], DASH

WOW, FPS (proprietary)

transport protocol

TCP

TCP

TCP

TCP or UDP

TCP

UDP or TCP

Application Layer: 2-15

Securing TCP

Vanilla TCP & UDP sockets:
▪ no encryption
▪ cleartext passwords sent into socket

traverse Internet in cleartext (!)

Transport Layer Security (TLS)
▪ provides encrypted TCP connections
▪ data integrity

▪ end-point authentication

TLS implemented in
application layer

▪ apps use TLS libraries, that
use TCP in turn

▪ cleartext sent into “socket”
traverse Internet encrypted

▪ more: Chapter 8

Application Layer: 2-16

Application layer: overview

▪ Principles of network
applications

▪ Web and HTTP

▪ E-mail, SMTP, IMAP

▪ The Domain Name System
DNS

▪ P2P applications

▪ video streaming and content
distribution networks

▪ socket programming with
UDP and TCP

Application Layer: 2-17

Web and HTTP

First, a quick review…

▪ web page consists of objects, each of which can be stored on
different Web servers

▪ object can be HTML file, JPEG image, Java applet, audio file,…

▪ web page consists of base HTML-file which includes several
referenced objects, each addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name path name

Application Layer: 2-18

HTTP overview

HTTP: hypertext transfer protocol
▪ Web’s application-layer protocol
▪ client/server model:

• client: browser that requests,
receives, (using HTTP protocol) and
“displays” Web objects

• server: Web server sends (using
HTTP protocol) objects in response
to requests

iPhone running
Safari browser

PC running
Firefox browser

server running
Apache Web

server

Application Layer: 2-19

HTTP overview (continued)

HTTP uses TCP:
▪ client initiates TCP connection

(creates socket) to server, port 80

▪ server accepts TCP connection
from client

▪ HTTP messages exchanged
between browser (HTTP client) and
Web server (HTTP server)

▪ TCP connection closed

HTTP is “stateless”
▪ server maintains no

information about past client
requests

protocols that maintain “state”
are complex!

▪ past history (state) must be
maintained

▪ if server/client crashes, their views
of “state” may be inconsistent,
must be reconciled

aside

Application Layer: 2-21

HTTP connections: two types

Non-persistent HTTP

Close connection after transfer

At most one object sent over
TCP connection

Persistent HTTP

Keep connection open

Multiple objects can be sent
over single TCP connection

Application Layer: 2-22

Non-persistent HTTP: response time

time to
transmit
file

initiate TCP
connection

RTT

request file

RTT

file received

time time

Non-persistent HTTP response time = 2RTT+ file transmission time

Application Layer: 2-26

Persistent HTTP (HTTP 1.1)

Non-persistent HTTP issues:

▪ requires 2 RTTs per object

▪OS overhead for each TCP
connection

▪browsers often open multiple
parallel TCP connections to
fetch referenced objects in
parallel

Persistent HTTP (HTTP1.1):

▪ server leaves connection open after
sending response

▪ subsequent HTTP messages
between same client/server sent
over open connection

▪ client sends requests as soon as it
encounters a referenced object

▪ as little as one RTT for all the
referenced objects (cutting
response time in half)

Application Layer: 2-28

HTTP request message

▪ two types of HTTP messages: request, response

▪ HTTP request message:
• ASCII (human-readable format)

header
 lines

GET /index.html HTTP/1.1\r\n

Host: www-net.cs.umass.edu\r\n

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X

10.15; rv:80.0) Gecko/20100101 Firefox/80.0 \r\n

Accept: text/html,application/xhtml+xml\r\n

Accept-Language: en-us,en;q=0.5\r\n

Accept-Encoding: gzip,deflate\r\n

Connection: keep-alive\r\n

\r\n

carriage return character
line-feed character

request line (GET, POST,
HEAD commands)

carriage return, line feed
at start of line indicates
end of header lines * Check out the online interactive exercises for more

examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ Application Layer: 2-29

HTTP request message: general format

request
line

header
lines

body

method sp sp cr lfversionURL

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~

Application Layer: 2-30

HTTP response message

status line (protocol
status code status phrase)

header
 lines

data, e.g., requested
HTML file

HTTP/1.1 200 OK

Date: Tue, 08 Sep 2020 00:53:20 GMT

Server: Apache/2.4.6 (CentOS)

OpenSSL/1.0.2k-fips PHP/7.4.9

mod_perl/2.0.11 Perl/v5.16.3

Last-Modified: Tue, 01 Mar 2016 18:57:50 GMT

ETag: "a5b-52d015789ee9e"

Accept-Ranges: bytes

Content-Length: 2651

Content-Type: text/html; charset=UTF-8

\r\n

data data data data data ...

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Application Layer: 2-32

HTTP response status codes

200 OK
• request succeeded, requested object later in this message

301 Moved Permanently
• requested object moved, new location specified later in this message (in

Location: field)

400 Bad Request
• request msg not understood by server

404 Not Found
• requested document not found on this server

505 HTTP Version Not Supported

▪ status code appears in 1st line in server-to-client response message.
▪ some sample codes:

Application Layer: 2-33

Maintaining user/server state: cookies

Web sites and client browser use
cookies to maintain some state
between transactions

Application Layer: 2-36

Maintaining user/server state: cookies
client

server

usual HTTP response msg

usual HTTP response msg

cookie file

one week later:

usual HTTP request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual HTTP request msg Amazon server
creates ID

1678 for user create
 entry

usual HTTP response
set-cookie: 1678 ebay 8734

amazon 1678

usual HTTP request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
amazon 1678

backend
database

time time Application Layer: 2-38

HTTP cookies: comments

What cookies can be used for:
▪ authorization

▪ shopping carts

▪ recommendations

▪ user session state (Web e-mail)

cookies and privacy:
▪ cookies permit sites to

learn a lot about you on
their site.

▪ third party persistent
cookies (tracking cookies)
allow common identity
(cookie value) to be
tracked across multiple
web sites

aside

Application Layer: 2-39

Web caches

▪ user configures browser to
point to a (local) Web cache

▪ browser sends all HTTP
requests to cache

• if object in cache: cache
returns object to client

• else cache requests object
from origin server, caches
received object, then
returns object to client

Goal: satisfy client requests without involving origin server

client

Web
cache

client

origin
server

Application Layer: 2-41

Web caches (aka proxy servers)

▪ Web cache acts as both
client and server

• server for original
requesting client

• client to origin server

▪ server tells cache about
object’s allowable caching in
response header:

Application Layer: 2-42

Caching example

origin

servers
public

 Internet

institutional

network
1 Gbps LAN

X Mbps

access link

Application Layer: 2-43

Why Web caching?

▪ reduce response time for client
request
• cache is closer to client

▪ reduce traffic on an institution’s
access link (e.g., reduce load and
queuing delays + reduce bandwidth
costs + delay link upgrades)

▪ Internet is dense with caches
• enables “poor” content providers to

more effectively deliver content

local web cache

Conditional GET

Goal: don’t send object if cache has
up-to-date cached version

• no object transmission delay (or use
of network resources)

▪ client: specify date of cached copy
in HTTP request
If-modified-since: <date>

▪ server: response contains no
object if cached copy is up-to-date:
HTTP/1.0 304 Not Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

client server

Application Layer: 2-48

HTTP/2

HTTP/2: [RFC 7540, 2015] increased flexibility at server in sending
objects to client:

▪ methods, status codes, most header fields unchanged from HTTP 1.1

▪ transmission order of requested objects based on client-specified
object priority (not necessarily FCFS)

▪ push unrequested objects to client

▪ divide objects into frames, schedule frames to mitigate HOL blocking

Key goal: decreased delay in multi-object HTTP requests

Application Layer: 2-50

HTTP 1.1: client requests 1 large object (e.g., video file) and 3 smaller
objects

client

server

GET O1
GET O2

GET O3
GET O4

O1
O2

O3O4

object data requested

O1

O2

O3
O4

objects delivered in order requested: O2, O3, O4 wait behind O1 Application Layer: 2-51

HTTP/2: mitigating HOL blocking
HTTP/2: objects divided into frames, frame transmission interleaved

client

server

GET O1
GET O2

GET O3
GET O4

O2

O4

object data requested

O1

O2

O3
O4

O2, O3, O4 delivered quickly, O1 slightly delayed

O3

O1

Application Layer: 2-52

HTTP/2 to HTTP/3

HTTP/2 over single TCP connection means:

▪ recovery from packet loss still stalls all object transmissions
• as in HTTP 1.1, browsers have incentive to open multiple parallel

TCP connections to reduce stalling, increase overall throughput

▪ no security over vanilla TCP connection

▪ HTTP/3: adds security, per object error- and congestion-
control (more pipelining) over UDP
• more on HTTP/3 in transport layer

Application Layer: 2-53

Application layer: overview

▪ Principles of network
applications

▪ Web and HTTP

▪ E-mail, SMTP, IMAP

▪ The Domain Name System
DNS

▪ P2P applications

▪ video streaming and content
distribution networks

▪ socket programming with
UDP and TCP

Application Layer: 2-54

E-mail

Three major components:
▪user agents
▪mail servers
▪ simple mail transfer protocol: SMTP

User Agent
▪ a.k.a. “mail reader”
▪ composing, editing, reading mail messages
▪ e.g., Outlook, iPhone mail client
▪outgoing, incoming messages stored on

server user mailbox

outgoing
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

Application Layer: 2-55

E-mail: mail servers

user mailbox

outgoing
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

mail servers:

▪mailbox contains incoming
messages for user

▪message queue of outgoing (to be
sent) mail messages

SMTP protocol between mail
servers to send email messages
▪ client: sending mail server

▪ “server”: receiving mail server

Application Layer: 2-56

SMTP RFC (5321)

▪ uses TCP to reliably transfer email message
from client (mail server initiating
connection) to server, port 25
▪ direct transfer: sending server (acting like client)

to receiving server

▪ three phases of transfer
• SMTP handshaking (greeting)

• SMTP transfer of messages

• SMTP closure

▪ command/response interaction (like HTTP)
• commands: ASCII text

• response: status code and phrase

initiate TCP
connection

RTT

time

220

250 Hello

HELO
SMTP

handshaking

TCP connection
initiated

“client”
 SMTP server

“server”
 SMTP server

SMTP
transfers

Application Layer: 2-57

Scenario: Alice sends e-mail to Bob

user

agent
mail

server

mail

server

1

2 3 4

5

6

Alice’s mail server Bob’s mail server

user

agent

Application Layer: 2-59

Sample SMTP interaction
S: 220 hamburger.edu

 C: HELO crepes.fr

 S: 250 Hello crepes.fr, pleased to meet you

 C: MAIL FROM: <alice@crepes.fr>

 S: 250 alice@crepes.fr... Sender ok

 C: RCPT TO: <bob@hamburger.edu>

 S: 250 bob@hamburger.edu ... Recipient ok

 C: DATA

 S: 354 Enter mail, end with "." on a line by itself

 C: Do you like ketchup?

 C: How about pickles?

 C: .

 S: 250 Message accepted for delivery

 C: QUIT

 S: 221 hamburger.edu closing connection

Application Layer: 2-60

SMTP: observations

▪ SMTP uses persistent
connections

▪ SMTP requires message
(header & body) to be in
7-bit ASCII

▪ SMTP server uses
CRLF.CRLF to determine
end of message

comparison with HTTP:

▪ HTTP: client pull

▪ SMTP: client push

▪ both have ASCII command/response
interaction, status codes

▪ HTTP: each object encapsulated in its
own response message

▪ SMTP: multiple objects sent in
multipart message

Application Layer: 2-61

Mail message format

SMTP: protocol for exchanging e-mail messages, defined in RFC 5321
(like RFC 7231 defines HTTP)

RFC 2822 defines syntax for e-mail message itself (like HTML defines
syntax for web documents)

header

body

blank

line

▪ header lines, e.g.,

• To:

• From:

• Subject:

these lines, within the body of the email
message area different from SMTP MAIL FROM:,
RCPT TO: commands!

▪ Body: the “message” , ASCII characters only

Application Layer: 2-62

Retrieving email: mail access protocols

sender’s e-mail
server

SMTP SMTP

receiver’s e-mail
server

e-mail access
protocol

(e.g., IMAP,
HTTP)

user

agent

user

agent

▪ SMTP: delivery/storage of e-mail messages to receiver’s server

▪mail access protocol: retrieval from server
• IMAP: Internet Mail Access Protocol [RFC 3501]: messages stored on server, IMAP

provides retrieval, deletion, folders of stored messages on server

▪ HTTP: gmail, Hotmail, Yahoo!Mail, etc. provides web-based interface on
top of STMP (to send), IMAP (or POP) to retrieve e-mail messages

Application Layer: 2-63

Application Layer: Overview

▪ Principles of network
applications

▪ Web and HTTP

▪ E-mail, SMTP, IMAP

▪ The Domain Name System
DNS

▪ P2P applications

▪ video streaming and content
distribution networks

▪ socket programming with
UDP and TCP

Application Layer: 2-64

DNS: Domain Name System

people: many identifiers:

• SSN, name, passport #

Internet hosts, routers:
• IP address (32 bit) - used for

addressing datagrams

• “name”, e.g., cs.umass.edu -
used by humans

Q: how to map between IP
address and name, and vice
versa ?

Domain Name System (DNS):

▪ distributed database implemented in
hierarchy of many name servers

▪ application-layer protocol: hosts, DNS
servers communicate to resolve
names (address/name translation)

• note: core Internet function,
implemented as application-layer
protocol

• complexity at network’s “edge”

Application Layer: 2-65

DNS: services, structure

Q: Why not centralize DNS?
▪ single point of failure
▪ traffic volume
▪ distant centralized database
▪ maintenance

DNS services:

▪hostname-to-IP-address translation

▪host aliasing

• canonical, alias names

▪ mail server aliasing

▪ load distribution

• replicated Web servers: many IP
addresses correspond to one
name

A: doesn‘t scale!
▪ Comcast DNS servers alone:

600B DNS queries/day
▪ Akamai DNS servers alone:

2.2T DNS queries/day

Application Layer: 2-66

Thinking about the DNS

humongous distributed database:
▪ ~ billion records, each simple

handles many trillions of queries/day:
▪many more reads than writes
▪performance matters: almost every

Internet transaction interacts with
DNS - msecs count!

organizationally, physically decentralized:
▪millions of different organizations

responsible for their records

“bulletproof”: reliability, security

Application Layer: 2-67

DNS: a distributed, hierarchical database

Client wants IP address for www.amazon.com; 1st approximation:

▪ client queries root server to find .com DNS server

▪ client queries .com DNS server to get amazon.com DNS server

▪ client queries amazon.com DNS server to get IP address for www.amazon.com

.com DNS servers .org DNS servers .edu DNS servers

… …

Top Level Domain

Root DNS Servers Root

nyu.edu

DNS servers

umass.edu

DNS servers
yahoo.com

DNS servers

amazon.com

DNS servers

pbs.org

DNS servers Authoritative

…… … …

Application Layer: 2-68

Local DNS name servers

▪ when host makes DNS query, it is sent to its local DNS server
• Local DNS server returns reply, answering:

• from its local cache of recent name-to-address translation pairs (possibly out
of date!)

• forwarding request into DNS hierarchy for resolution

• each ISP has local DNS name server; to find yours:
• MacOS: % scutil --dns

• Windows: >ipconfig /all

▪ local DNS server doesn’t strictly belong to hierarchy

Application Layer: 2-72

DNS name resolution: iterated query

Example: host at engineering.nyu.edu

wants IP address for gaia.cs.umass.edu

Iterated query:
▪ contacted server replies

with name of server to
contact

▪ “I don’t know this name,
but ask this server”

requesting host at
engineering.nyu.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.nyu.edu

1

2
3

4

5

6

authoritative DNS server

dns.cs.umass.edu

7

8

TLD DNS server

Application Layer: 2-73

DNS records

DNS: distributed database storing resource records (RR)

type=NS
▪ name is domain (e.g., foo.com)

▪ value is hostname of
authoritative name server for
this domain

RR format: (name, value, type, ttl)

type=A
▪ name is hostname
▪ value is IP address

type=CNAME
▪ name is alias name for some “canonical”

(the real) name
▪ www.ibm.com is really servereast.backup2.ibm.com

▪ value is canonical name

type=MX
▪ value is name of SMTP mail

server associated with name

Application Layer: 2-76

Getting your info into the DNS

example: new startup “Network Utopia”

▪ register name networkuptopia.com at DNS registrar (e.g., Network
Solutions)
• provide names, IP addresses of authoritative name server (primary and

secondary)

• registrar inserts NS, A RRs into .com TLD server:
 (networkutopia.com, dns1.networkutopia.com, NS)

 (dns1.networkutopia.com, 212.212.212.1, A)

▪ create authoritative server locally with IP address 212.212.212.1
• type A record for www.networkuptopia.com

• type MX record for networkutopia.com

Application Layer: 2-79

Application Layer: Overview

▪ Principles of network
applications

▪ Web and HTTP

▪ E-mail, SMTP, IMAP

▪ The Domain Name System
DNS

▪ P2P applications

▪ video streaming and content
distribution networks

▪ socket programming with
UDP and TCP

Application Layer: 2-81

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

Peer-to-peer (P2P) architecture

▪ no always-on server
▪ arbitrary end systems directly

communicate
▪ peers request service from other

peers, provide service in return to
other peers
• self scalability – new peers bring new

service capacity, and new service demands

▪ peers are intermittently connected
and change IP addresses
• complex management

▪ examples: P2P file sharing (BitTorrent),
streaming (KanKan), VoIP (Skype)

Application Layer: 2-82

Introduction: 1-83

File distribution: client-server vs P2P

Q: how much time to distribute file (size F) from one server to
N peers?
• peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant

 bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacityu2 d2

u1 d1

di

ui

Introduction: 1-84

File distribution time: client-server

▪ server transmission: must sequentially
send (upload) N file copies:
• time to send one copy: F/us

• time to send N copies: NF/us

▪ client: each client must download
file copy
• dmin = min client download rate
• min client download time: F/dmin

us

network

di

ui

F

increases linearly in N

time to distribute F
to N clients using

client-server approach
Dc-s > max{NF/us,,F/dmin}

File distribution time: P2P

▪ server transmission: must upload at
least one copy:
• time to send one copy: F/us

▪ client: each client must download
file copy
• min client download time: F/dmin

us

network

di

ui

F

▪ clients: as aggregate must download NF bits
• max upload rate (limiting max download rate) is us + ui

time to distribute F
to N clients using

P2P approach
DP2P > max{F/us,,F/dmin,,NF/(us + ui)}

… but so does this, as each peer brings service capacity
increases linearly in N …

Application Layer: 2-85

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
u

m
 D

is
tr

ib
u

ti
o

n
 T

im
e P2P

Client-Server

Application Layer: 2-86

P2P file distribution: BitTorrent

▪ file divided into 256Kb chunks
▪ peers in torrent send/receive file chunks

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

Alice arrives …
… obtains list
of peers from tracker
… and begins exchanging
file chunks with peers in torrent

Application Layer: 2-87

P2P file distribution: BitTorrent

▪ peer joining torrent:
• has no chunks, but will accumulate them

over time from other peers

• registers with tracker to get list of peers,
connects to subset of peers
(“neighbors”)

▪ while downloading, peer uploads chunks to other peers

▪ peer may change peers with whom it exchanges chunks

▪ churn: peers may come and go

▪ once peer has entire file, it may (selfishly) leave or (altruistically) remain
in torrent

Application Layer: 2-88

BitTorrent: requesting, sending file chunks

Requesting chunks:
▪ at any given time, different

peers have different
subsets of file chunks

▪ periodically, Alice asks
each peer for list of chunks
that they have

▪ Alice requests missing
chunks from peers, rarest
first

Sending chunks: tit-for-tat
▪ Alice sends chunks to those four

peers currently sending her chunks
at highest rate
• other peers are choked by Alice (do

not receive chunks from her)
• re-evaluate top 4 every10 secs

▪ every 30 secs: randomly select
another peer, starts sending
chunks
• “optimistically unchoke” this peer
• newly chosen peer may join top 4

Application Layer: 2-89

BitTorrent: tit-for-tat
(1) Alice “optimistically unchokes” Bob

(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates

(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better trading
partners, get file faster !

Application Layer: 2-90

Application layer: overview

▪ Principles of network
applications

▪ Web and HTTP

▪ E-mail, SMTP, IMAP

▪ The Domain Name System
DNS

▪ P2P applications

▪ video streaming and content
distribution networks

▪ socket programming with
UDP and TCP

Application Layer: 2-91

Video Streaming and CDNs: context

▪ stream video traffic: major
consumer of Internet bandwidth
• Netflix, YouTube, Amazon Prime: 80% of

residential ISP traffic (2020)

▪ challenge: scale - how to reach
~1B users?

▪ challenge: heterogeneity
▪ different users have different capabilities (e.g., wired

versus mobile; bandwidth rich versus bandwidth poor)

▪ solution: distributed, application-level infrastructure

Application Layer: 2-92

Multimedia: video

▪ video: sequence of images
displayed at constant rate

• e.g., 24 images/sec

▪ digital image: array of pixels

• each pixel represented by bits

▪ coding: use redundancy within and
between images to decrease # bits
used to encode image

• spatial (within image)

• temporal (from one image to
next)

……………………..

spatial coding example: instead

of sending N values of same

color (all purple), send only two

values: color value (purple) and

number of repeated values (N)

……………….…….

frame i

frame i+1

temporal coding example:

instead of sending

complete frame at i+1,

send only differences from

frame i

Application Layer: 2-93

Multimedia: video

……………………..

spatial coding example: instead

of sending N values of same

color (all purple), send only two

values: color value (purple) and

number of repeated values (N)

……………….…….

frame i

frame i+1

temporal coding example:

instead of sending

complete frame at i+1,

send only differences from

frame i

▪ CBR: (constant bit rate): video
encoding rate fixed

▪ VBR: (variable bit rate): video
encoding rate changes as
amount of spatial, temporal
coding changes

▪ examples:

• MPEG 1 (CD-ROM) 1.5 Mbps

• MPEG2 (DVD) 3-6 Mbps

• MPEG4 (often used in
Internet, 64Kbps – 12 Mbps)

Application Layer: 2-94

Main challenges:
▪ server-to-client bandwidth will vary over time, with changing network

congestion levels (in house, access network, network core, video
server)

▪ packet loss, delay due to congestion will delay playout, or result in
poor video quality

Streaming stored video
simple scenario:

video server

(stored video)
client

Internet

Application Layer: 2-95

Streaming stored video

1. video
recorded
(e.g., 30
frames/sec)

2. video
sent

streaming: at this time, client playing out
early part of video, while server still sending
later part of video

time

3. video received, played out at client
(30 frames/sec)

network delay
(fixed in this

example)

Application Layer: 2-96

Streaming stored video: challenges

▪ continuous playout constraint: during client
video playout, playout timing must match
original timing
• … but network delays are variable (jitter), so will

need client-side buffer to match continuous playout
constraint

▪ other challenges:

• client interactivity: pause, fast-forward, rewind,
jump through video

• video packets may be lost, retransmitted

Application Layer: 2-97

Streaming stored video: playout buffering

constant bit
 rate video
transmission

time

variable
network

delay

client video
reception

constant bit
 rate video
 playout at client

client playout
delay

b
u

ff
er

ed
vi

d
eo

▪client-side buffering and playout delay: compensate for
network-added delay, delay jitter

Application Layer: 2-98

Streaming multimedia: DASH

server:
▪ divides video file into multiple chunks

▪ each chunk encoded at multiple different rates

▪ different rate encodings stored in different files

▪ files replicated in various CDN nodes

▪ manifest file: provides URLs for different chunks client

?

client:
▪ periodically estimates server-to-client bandwidth

▪ consulting manifest, requests one chunk at a time

• chooses maximum coding rate sustainable given current bandwidth

• can choose different coding rates at different points in time (depending
on available bandwidth at time), and from different servers

...

...

...

Dynamic, Adaptive
Streaming over HTTP

Application Layer: 2-99

...

...

...

Streaming multimedia: DASH

▪“intelligence” at client: client
determines
• when to request chunk (so that buffer

starvation, or overflow does not occur)

• what encoding rate to request (higher
quality when more bandwidth
available)

• where to request chunk (can request
from URL server that is “close” to
client or has high available
bandwidth)

Streaming video = encoding + DASH + playout buffering

client

?

Application Layer: 2-100

Content distribution networks (CDNs)

challenge: how to stream content (selected from millions of
videos) to hundreds of thousands of simultaneous users?

▪ option 1: single, large “mega-
server”
• single point of failure
• point of network congestion
• long (and possibly congested)

path to distant clients

….quite simply: this solution doesn’t scale

Application Layer: 2-101

Content distribution networks (CDNs)

challenge: how to stream content (selected from millions of
videos) to hundreds of thousands of simultaneous users?

• enter deep: push CDN servers deep into many access networks
• close to users
• Akamai: 240,000 servers deployed
 in > 120 countries (2015)

▪ option 2: store/serve multiple copies of videos at multiple
geographically distributed sites (CDN)

• bring home: smaller number (10’s) of
larger clusters in POPs near access nets

• used by Limelight

Application Layer: 2-102

▪ subscriber requests content, service provider returns manifest

Content distribution networks (CDNs)
▪ CDN: stores copies of content (e.g. MADMEN) at CDN nodes

where’s Madmen?

manifest file

• using manifest, client retrieves content at highest supportable rate

• may choose different rate or copy if network path congested

Application Layer: 2-103

Internet host-host communication as a service

OTT challenges: coping with a congested Internet from the “edge”
▪ what content to place in which CDN node?

▪ from which CDN node to retrieve content? At which rate?

OTT: “over the top”

Content distribution networks (CDNs)

Application Layer: 2-104

Application Layer: Overview

▪ Principles of network
applications

▪ Web and HTTP

▪ E-mail, SMTP, IMAP

▪ The Domain Name System
DNS

▪ P2P applications

▪ video streaming and content
distribution networks

▪ socket programming with
UDP and TCP

Application Layer: 2-105

Socket programming

goal: learn how to build client/server applications that
communicate using sockets

socket: door between application process and end-end-transport
protocol

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Application Layer: 2-106

Socket programming

Two socket types for two transport services:
▪ UDP: unreliable datagram
▪ TCP: reliable, byte stream-oriented

Application Example:
1. client reads a line of characters (data) from its keyboard and sends

data to server
2. server receives the data and converts characters to uppercase
3. server sends modified data to client
4. client receives modified data and displays line on its screen

Application Layer: 2-107

Socket programming with UDP

UDP: no “connection” between
client and server:

▪ no handshaking before sending data
▪ sender explicitly attaches IP destination

address and port # to each packet
▪ receiver extracts sender IP address and

port# from received packet

UDP: transmitted data may be lost or received out-of-order

Application viewpoint:
▪ UDP provides unreliable transfer of groups of bytes (“datagrams”)

between client and server processes
Application Layer: 2-108

Client/server socket interaction: UDP

close

clientSocket

read datagram from

clientSocket

create socket:

clientSocket =

socket(AF_INET,SOCK_DGRAM)

Create datagram with serverIP address

And port=x; send datagram via

clientSocket

create socket, port= x:

serverSocket =

socket(AF_INET,SOCK_DGRAM)

read datagram from

serverSocket

write reply to

serverSocket

specifying

client address,

port number

server (running on serverIP) client

Application Layer: 2-109

Example app: UDP client

from socket import *

serverName = ‘hostname’

serverPort = 12000

clientSocket = socket(AF_INET,

 SOCK_DGRAM)

message = raw_input(’Input lowercase sentence:’)

clientSocket.sendto(message.encode(),

 (serverName, serverPort))

modifiedMessage, serverAddress =

 clientSocket.recvfrom(2048)

print modifiedMessage.decode()

clientSocket.close()

Python UDPClient

include Python’s socket library

create UDP socket for server

get user keyboard input

attach server name, port to message; send into socket

print out received string and close socket

read reply characters from socket into string

Application Layer: 2-110

Example app: UDP server
Python UDPServer

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET, SOCK_DGRAM)

serverSocket.bind(('', serverPort))

print (“The server is ready to receive”)

while True:

 message, clientAddress = serverSocket.recvfrom(2048)

 modifiedMessage = message.decode().upper()

 serverSocket.sendto(modifiedMessage.encode(),

 clientAddress)

create UDP socket

bind socket to local port number 12000

loop forever

Read from UDP socket into message, getting
client’s address (client IP and port)

send upper case string back to this client

Application Layer: 2-111

Socket programming with TCP
Client must contact server
▪ server process must first be

running

▪ server must have created socket
(door) that welcomes client’s
contact

Client contacts server by:
▪ Creating TCP socket, specifying IP

address, port number of server
process

▪ when client creates socket: client
TCP establishes connection to
server TCP

▪when contacted by client, server
TCP creates new socket for server
process to communicate with that
particular client
• allows server to talk with multiple

clients
• source port numbers used to

distinguish clients (more in Chap 3)

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server
processes

Application viewpoint

Application Layer: 2-112

Client/server socket interaction: TCP

server (running on hostid) client

wait for incoming

connection request
connectionSocket =

serverSocket.accept()

create socket,
port=x, for incoming

request:
serverSocket = socket()

create socket,
connect to hostid, port=x

clientSocket = socket()

send request using

clientSocketread request from

connectionSocket

write reply to

connectionSocket

TCP
connection setup

close

connectionSocket

read reply from

clientSocket

close

clientSocket
Application Layer: 2-113

Example app: TCP client

from socket import *

serverName = ’servername’

serverPort = 12000

clientSocket = socket(AF_INET, SOCK_STREAM)

clientSocket.connect((serverName,serverPort))

sentence = raw_input(‘Input lowercase sentence:’)

clientSocket.send(sentence.encode())

modifiedSentence = clientSocket.recv(1024)

print (‘From Server:’, modifiedSentence.decode())

clientSocket.close()

Python TCPClient

create TCP socket for server,

remote port 12000

No need to attach server name, port

Application Layer: 2-114

Example app: TCP server

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind((‘’,serverPort))

serverSocket.listen(1)

print ‘The server is ready to receive’

while True:

 connectionSocket, addr = serverSocket.accept()

 sentence = connectionSocket.recv(1024).decode()

 capitalizedSentence = sentence.upper()

 connectionSocket.send(capitalizedSentence.

 encode())

 connectionSocket.close()

Python TCPServer

create TCP welcoming socket

server begins listening for

incoming TCP requests

loop forever

server waits on accept() for incoming
requests, new socket created on return

read bytes from socket (but

not address as in UDP)

close connection to this client (but not

welcoming socket)

Application Layer: 2-115

Chapter 2: Summary

▪ application architectures
• client-server

• P2P

▪ application service requirements:
• reliability, bandwidth, delay

▪ Internet transport service model
• connection-oriented, reliable: TCP

• unreliable, datagrams: UDP

our study of network application layer is now complete!

▪ specific protocols:
• HTTP
• SMTP, IMAP
• DNS
• P2P: BitTorrent

▪ video streaming, CDNs
▪ socket programming:
 TCP, UDP sockets

Application Layer: 2-116

Chapter 2: Summary
Most importantly: learned about protocols!

▪ typical request/reply message
exchange:
• client requests info or service

• server responds with data, status code

▪ message formats:
• headers: fields giving info about data

• data: info(payload) being
communicated

important themes:
▪ centralized vs. decentralized
▪ stateless vs. stateful
▪ scalability
▪ reliable vs. unreliable

message transfer
▪ “complexity at network

edge”

Application Layer: 2-117

Application Layer: 2-118

Additional Chapter 2 slides

Sample SMTP interaction

Application Layer: 2-119

S: 220 hamburger.edu

 C: HELO crepes.fr

 S: 250 Hello crepes.fr, pleased to meet you

 C: MAIL FROM: <alice@crepes.fr>

 S: 250 alice@crepes.fr... Sender ok

 C: RCPT TO: <bob@hamburger.edu>

 S: 250 bob@hamburger.edu ... Recipient ok

 C: DATA

 S: 354 Enter mail, end with "." on a line by itself

 C: Do you like ketchup?

 C: How about pickles?

 C: .

 S: 250 Message accepted for delivery

 C: QUIT

 S: 221 hamburger.edu closing connection

CDN content access: a closer look

netcinema.com

KingCDN.com

1

1. Bob gets URL for video

http://netcinema.com/6Y7B23V

from netcinema.com web page

2

2. resolve http://netcinema.com/6Y7B23V

via Bob’s local DNS

netcinema’s
authoratative DNS

3

3. netcinema’s DNS returns CNAME for

http://KingCDN.com/NetC6y&B23V 4

56. request video from

KINGCDN server,

streamed via HTTP

KingCDN
authoritative DNS

Bob’s
local DNS
server

Bob (client) requests video http://netcinema.com/6Y7B23V
▪ video stored in CDN at http://KingCDN.com/NetC6y&B23V

Application Layer: 2-120

Case study: Netflix

1

Bob manages
Netflix account

Netflix registration,
accounting servers

Amazon cloud

CDN
server

2

Bob browses
Netflix video

Manifest file,
requested
returned for
specific video

DASH server
selected, contacted,
streaming begins

upload copies of
multiple versions of
video to CDN servers

CDN
server

CDN
server

3

4

Application Layer: 2-121

	Slide 1
	Slide 2: Application layer: overview
	Slide 4: Some network apps
	Slide 5: Creating a network app
	Slide 6: Client-server paradigm
	Slide 7: Peer-peer architecture
	Slide 8: Processes communicating
	Slide 9: Sockets
	Slide 10: Addressing processes
	Slide 11: An application-layer protocol defines:
	Slide 12: What transport service does an app need?
	Slide 13: Transport service requirements: common apps
	Slide 14: Internet transport protocols services
	Slide 15: Internet applications, and transport protocols
	Slide 16: Securing TCP
	Slide 17: Application layer: overview
	Slide 18: Web and HTTP
	Slide 19: HTTP overview
	Slide 21: HTTP overview (continued)
	Slide 22: HTTP connections: two types
	Slide 26: Non-persistent HTTP: response time
	Slide 28: Persistent HTTP (HTTP 1.1)
	Slide 29: HTTP request message
	Slide 30: HTTP request message: general format
	Slide 32: HTTP response message
	Slide 33: HTTP response status codes
	Slide 36: Maintaining user/server state: cookies
	Slide 38: Maintaining user/server state: cookies
	Slide 39: HTTP cookies: comments
	Slide 41: Web caches
	Slide 42: Web caches (aka proxy servers)
	Slide 43: Caching example
	Slide 48: Conditional GET
	Slide 50: HTTP/2
	Slide 51
	Slide 52: HTTP/2: mitigating HOL blocking
	Slide 53: HTTP/2 to HTTP/3
	Slide 54: Application layer: overview
	Slide 55: E-mail
	Slide 56: E-mail: mail servers
	Slide 57: SMTP RFC (5321)
	Slide 59: Scenario: Alice sends e-mail to Bob
	Slide 60: Sample SMTP interaction
	Slide 61: SMTP: observations
	Slide 62: Mail message format
	Slide 63: Retrieving email: mail access protocols
	Slide 64: Application Layer: Overview
	Slide 65: DNS: Domain Name System
	Slide 66: DNS: services, structure
	Slide 67: Thinking about the DNS
	Slide 68: DNS: a distributed, hierarchical database
	Slide 72: Local DNS name servers
	Slide 73: DNS name resolution: iterated query
	Slide 76: DNS records
	Slide 79: Getting your info into the DNS
	Slide 81: Application Layer: Overview
	Slide 82: Peer-to-peer (P2P) architecture
	Slide 83: File distribution: client-server vs P2P
	Slide 84: File distribution time: client-server
	Slide 85: File distribution time: P2P
	Slide 86: Client-server vs. P2P: example
	Slide 87: P2P file distribution: BitTorrent
	Slide 88: P2P file distribution: BitTorrent
	Slide 89: BitTorrent: requesting, sending file chunks
	Slide 90: BitTorrent: tit-for-tat
	Slide 91: Application layer: overview
	Slide 92: Video Streaming and CDNs: context
	Slide 93: Multimedia: video
	Slide 94: Multimedia: video
	Slide 95: Streaming stored video
	Slide 96: Streaming stored video
	Slide 97: Streaming stored video: challenges
	Slide 98: Streaming stored video: playout buffering
	Slide 99: Streaming multimedia: DASH
	Slide 100: Streaming multimedia: DASH
	Slide 101: Content distribution networks (CDNs)
	Slide 102: Content distribution networks (CDNs)
	Slide 103: Content distribution networks (CDNs)
	Slide 104: Content distribution networks (CDNs)
	Slide 105: Application Layer: Overview
	Slide 106: Socket programming
	Slide 107: Socket programming
	Slide 108: Socket programming with UDP
	Slide 109: Client/server socket interaction: UDP
	Slide 110: Example app: UDP client
	Slide 111: Example app: UDP server
	Slide 112: Socket programming with TCP
	Slide 113: Client/server socket interaction: TCP
	Slide 114: Example app: TCP client
	Slide 115: Example app: TCP server
	Slide 116: Chapter 2: Summary
	Slide 117: Chapter 2: Summary
	Slide 118: Additional Chapter 2 slides
	Slide 119: Sample SMTP interaction
	Slide 120: CDN content access: a closer look
	Slide 121: Case study: Netflix

