Chapter 2
Application Layer

A note on the use of these PowerPoint slides:

We're making these slides freely available to all (faculty, students,
readers). They’re in PowerPoint form so you see the animations; and
can add, modify, and delete slides (including this one) and slide content
to suit your needs. They obviously represent a /ot of work on our part.
In return for use, we only ask the following:

= If you use these slides (e.g., in a class) that you mention their
source (after all, we'd like people to use our book!)

= If you post any slides on a www site, that you note that they are
adapted from (or perhaps identical to) our slides, and note our
copyright of this material.

For a revision history, see the slide note for this page.
Thanks and enjoy! JFK/KWR

All material copyright 1996-2020
J.F Kurose and K.W. Ross, All Rights Reserved

James F. Kurose | Keith W. Ross

e e

MPUTER. ™
NETWORKING

ATOP-DOWN APPROACH

@ 2 Eighth Edition —

W

Computer Networking: A
Top-Down Approach

8th edition n
Jim Kurose, Keith Ross
Pearson, 2020

Application Layer: 2-1



Application layer: overview

" Principles of network
applications

= Web and HTTP
= E-mail, SMTP, IMAP

" The Domain Name System
DNS

= P2P applications

" video streaming and content
distribution networks

" socket programming with
UDP and TCP

Application Layer: 2-2



Some network apps

" social networking = voice over IP (e.g., Skype)

= Web " real-time video conferencing
= text messaging (e.g., Zoom)

= e-mail " Internet search

= multi-user network games " remote login

= streaming stored video
(YouTube, Hulu, Netflix)

= P2P file sharing Q: your favorites?

Application Layer: 2-4



Creating a network app

application
write programs that: ‘dttw‘l’kkt

physical

= run on (different) end systems
=" communicate over network

" e.g., web server software
communicates with browser software

no need to write software for
network-core devices

H application
= network-core devices do not run user thpokrt \
applications T
\ TRk
> physical

physical
= applications on end systems allows
for rapid app development,
propagation

Application Layer: 2-5



Client-server paradigm

server:
= always-on host
=" permanent IP address

= often in data centers, for scaling

clients:
= contact, communicate with server
" may be intermittently connected
" may have dynamic IP addresses
= do not communicate directly with 5
each other = ‘\

= examples: HTTP, IMAP, FTP

Application Layer: 2-6



Peer-peer architecture

" no always-on server

= arbitrary end systems directly
communicate

" peers request service from other
peers, provide service in return to
other peers

 self scalability — new peers bring new
service capacity, as well as new service
demands

= peers are intermittently connected
and change IP addresses
° complex management

= example: P2P file sharing

Application Layer: 2-7



Processes communicating

process: program running - clients, servers

within a host client process: process that

= withi host t initiates communication
within same host, tWo Server process: process

Processes communicate using that waits to be contacted
Inter-process communication

(defined by OS)
= note: applications with

" processes in different hosts P2P architectures have

communicate by exchanging client processes &
messages server processes

Application Layer: 2-8



Sockets

= process sends/receives messages to/from its socket

= socket analogous to door

* sending process shoves message out door

e sending process relies on transport infrastructure on other side of
door to deliver message to socket at receiving process

 two sockets involved: one on each side

application

A

socket
\\

Internet

—
application controlled by

app developer

controlled

by OS

v

\

Application Layer: 2-9



Addressing processes

= t0 receive messages, process = jdentifier includes both I[P address
must have identifier and port numbers associated with
= host device has unique 32-bit process on host.
IP address " example port numbers:
» Q: does IP address of host on * HTTP server: 80
which process runs suffice for * mail server: 25
identifying the process? " to send HTTP message to
= A: N0, Many processes gaia.cs.umass.edu web server:
can be running on * IP address: 128.119.245.12
same host * port number: 80

" more shortly...

Application Layer: 2-10



An application-layer protocol defines:

= types of messages exchanged, open protocols:
° e.g., request, response = defined in RFCs, everyone
" message syntax: has access to protocol
* what fields in messages & definition
how fields are delineated = allows for interoperability
" message semantics =e.g., HTTP, SMTP
* meaning of information in proprietary protocols:
fields

= e.g., Skype, Zoom
= rules for when and how

processes send & respond to
messages

Application Layer: 2-11



What transport service does an app need?

data integrity throughput

" some apps (e.g., file transfer, " some apps (e.g., multimedia)
web transactions) require require minimum amount of
100% reliable data transfer throughput to be “effective”

= other apps (e.g., audio) can = other apps (“elastic apps”)
tolerate some loss make use of whatever

throughput they get

timing

" some apps (e.g., Internet security
telephony, interactive games) = encryption, data integrity,

require low delay to be “effective”

Application Layer: 2-12



Transport service requirements: common apps

file transfer/download

application data loss throughput time sensitive?
Nno 10SsS elastic no
e-mail no loss elastic no
Web documents  no loss elastic no

real-time audio/video

streaming audio/video
interactive games
text messaging

loss-tolerant

loss-tolerant
loss-tolerant
no loss

audio: 5Kbps-1Mbps
video:10Kbps-5Mbps
same as above
Kbps+

elastic

ves, 10’s msec

yes, few secs
ves, 10’s msec
yes and no

Application Layer: 2-13



Internet transport protocols services

TCP service:

" reliable transport between sending
and receiving process

" flow control: sender won’t
overwhelm receiver

" congestion control: throttle sender
when network overloaded

" connection-oriented: setup required
between client and server processes

" does not provide: timing, minimum
throughput guarantee, security

UDP service:

= ynreliable data transfer
between sending and receiving
process

" does not provide: reliability,
flow control, congestion
control, timing, throughput
guarantee, security, or
connection setup.

Q: why bother? Why
is there a UDP?

Application Layer: 2-14



Internet applications, and transport protocols

file transfer/download

Internet telephony

application

application layer protocol transport protocol
FTP [RFC 959] TCP
e-mail SMTP [RFC 5321] TCP
Web documents HTTP 1.1 [RFC 7320] TCP
SIP [RFC 3261], RTP [RFC TCP or UDP

3550], or proprietary
HTTP [RFC 7320], DASH TCP

streaming audio/video
interactive games

WOW, FPS (proprietary) UDP or TCP

Application Layer: 2-15



Securing TCP

Vanilla TCP & UDP sockets:

" No encryption

" cleartext passwords sent into socket
traverse Internet in cleartext (!)

Transport Layer Security (TLS)

" provides encrypted TCP connections
= data integrity
" end-point authentication

TLS implemented in

application layer

= apps use TLS libraries, that
use TCP in turn

= cleartext sent into “socket”
traverse Internet encrypted

" more: Chapter 8

Application Layer: 2-16



Application layer: overview

= Web and HTTP

Application Layer: 2-17



Web and HTTP

First, a quick review...

= web page consists of objects, each of which can be stored on
different Web servers

= object can be HTML file, JPEG image, Java applet, audio file,...

= web page consists of base HTML-file which includes several
referenced objects, each addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

— ——

host name path name

Application Layer: 2-18



HTTP overview

HTTP: hypertext transfer protocol
= Web’s application-layer protocol
= client/server model:

e client: browser that requests,
receives, (using HTTP protocol) and
“displays” Web objects

 server: Web server sends (using
HTTP protocol) objects in response
to requests

0(\93 server running
es® Apache Web
server

iPhone running
Safari browser

Application Layer: 2-19



HTTP overview (continued)

HTTP uses TCP: HTTP is “stateless ”
= client initiates TCP connection " server maintains no

(creates socket) to server, port 80 information about past client
= server accepts TCP connection requests |

from client aside

protocols that maintain “state”

" HTTP messages exchanged are complex!

between browser (HTTP client) and .
= past history (state) must be
Web server (HTTP server) maintained

= TCP connection closed = if server/client crashes, their views

of “state” may be inconsistent,
must be reconciled

Application Layer: 2-21



HTTP connections: two types

Non-persistent HTTP Persistent HTTP
Close connection after transfer Keep connection open
At most one object sent over Multiple objects can be sent

TCP connection over single TCP connection

Application Layer: 2-22



Non-persistent HTTP: response time

./
initiate TCP
connection \
RTT< /
request file —
time to
RTTS * transmit
. . - file
file received —{
time time

Non-persistent HTTP response time = 2RTT+ file transmission time

Application Layer: 2-26



Persistent HTTP (HTTP 1.2)

Non-persistent HTTP issues: Persistent HTTP (HTTP1.1):

" requires 2 RTTs per object = server leaves connection open after

= OS overhead for each TCP sending response
connection = subsequent HTTP messages

= browsers often open multiple between same client/server sent
parallel TCP connections to over open connection
fetch referenced objects in = client sends requests as soon as it
parallel encounters a referenced object

= 3s little as one RTT for all the
referenced objects (cutting
response time in half)

Application Layer: 2-28



HTTP request message

" two types of HTTP messages: request, response

= HTTP request message:

e ASCIlI (human-readable format)
carriage return character

I/ine-feed character

request line (GET, POST,
HEAD commands)

A 4

carriage return, line feed —
at start of line indicates

end of header lines * Check out the online interactive exercises for more

examples: http:/gaia.cs.umass.edu/kurose_ross/interactive/ Application Layer: 2-29



HTTP request message: general format

method |sp| URL |sp| version |cr|If lri?]qeuest
header field name value |cr | If N
header
lines
header field name value |cr| If
cr| If
entity body ~ body

Application Layer: 2-30



HTTP response message

status line (protocol > HTTP/1.1 200 OK
status code status phrase)

Application Layer: 2-32



HTTP response status codes

= status code appears in 1st line in server-to-client response message.
" some sample codes:

200 OK
* request succeeded, requested object later in this message

301 Moved Permanently

* requested object moved, new location specified later in this message (in
Location: field)

400 Bad Request

* request msg not understood by server

404 Not Found

* requested document not found on this server

505 HTTP Version Not Supported

Application Layer: 2-33



Maintaining user/server state: cookies

Web sites and client browser use
cookies to maintain some state
between transactions

Application Layer

:2-36



Maintaining user/server state: cookies

client V/

ebay 8734 B

cookie file

ebay 8734

amazon 1678

one week later:

ebay 8734
amazon 1678

E server

usual HTTP request msg

usual HTTP response
set-cookie: 1678

- —

usual HTTP request msg

cookie: 1678

usual HTTP response msg
usual HTTP request msg
cookie: 1678 -

usual HTTP response msg

Amazon server
creates ID
1678 for user

cookie-
specific
action

specific
action

create
entry _ database

dCCesSs

aCCess

cookie- /

backend

Application Layer: 2-38



HTTP cookies: comments

What cookies can be used for:

= aquthorization

= shopping carts

= recommendations

" user session state (Web e-mail)

cookies and privacy:

= cookies permit sites to
learn a lot about you on

their site.

= third party persistent
cookies (tracking cookies)
allow common identity
(cookie value) to be
tracked across multiple

web sites

aside —

Application Layer: 2-39



Web caches

Goal: satisfy client requests without involving origin server

" user configures browser to
point to a (local) Web cache

" browser sends all HTTP
requests to cache

* jf object in cache: cache
returns object to client

* else cache requests object
from origin server, caches
received object, then
returns object to client

client

origin
server

Application Layer: 2-41



Web caches (aka proxy servers)

= \Web cache acts as both
client and server

e server for original
requesting client

* client to origin server

= server tells cache about
object’s allowable caching in
response header:

Cache-Control: max-age=<seconds>

Cache-Control: no-cache

Application Layer: 2-42



Caching example

Why Web caching? E Eﬂ
= reduce response time for client Eﬂ ﬁ orgin
servers
public
req u ESt. ] Internet ﬁ
e cache is closer to client @
" reduce traffic on an institution’s
. )H X Mbps
access link (e.g., reduce load and access link

gueuing delays + reduce bandwidth instittutiorllal =<
costs + delay link upgrades) ”e% Gbps LAN

o o /‘ /‘ /‘
" Internet is dense with caches % a,l «g,

* enables “poor” content providers to local web cache
more effectively deliver content

Application Layer: 2-43



Conditional GET

Goal: don’t send object if cache has
up-to-date cached version
* no object transmission delay (or use
of network resources)

= client: specify date of cached copy
iIn HTTP request

If-modified-since: <date>

" server: response contains no
object if cached copy is up-to-date:

HTTP/1.0 304 Not Modified

client

HTTP request msg
If-modified-since: <date>

object

>

not

HTTP response
HTTP/1.0
304 Not Modified

—— modified
before
<date>

HTTP request msg
If-modified-since: <date>

—  Object

modified

HTTP response
nEl HTTP/1.0 200 OK

<data>

-

after
<date>

Application Layer: 2-48



HTTP/2
Key goal: decreased delay in multi-object HTTP requests

HTTP/2: [rec 7540, 2015) increased flexibility at server in sending
objects to client:

" methods, status codes, most header fields unchanged from HTTP 1.1

= transmission order of requested objects based on client-specified
object priority (not necessarily FCFS)

= push unrequested objects to client
= divide objects into frames, schedule frames to mitigate HOL blocking

Application Layer: 2-50



HTTP 1.1: client requests 1 large object (e.g., video file) and 3 smaller

objects
server

- | N
L
||

—{.

GETO, GETO
g 3 _GETO, Geto,

_,l object data requested
client

-

N

O

/1N
OO0OO0O
M~ W

AA A I
O
R
\\\

0N
Y3

n
Y

objects delivered in order requested: O,, O,, O, wait behind O,

Application Layer: 2-51



HTTP/2: mitigating HOL blocking

HTTP/2: objects divided into frames, frame transmission interleaved

server

- | X
I
.

q GETO, GETO
.N' 3 GETOZ GETOl
client

-i
—,

)

object data requested

C

N

/1N
00O

D

A
C
=
A
N

0., O,, O, delivered quickly, O, slightly delayed

Application Layer: 2-52



HTTP/2 to HTTP/3

HTTP/2 over single TCP connection means:

= recovery from packet loss still stalls all object transmissions

 asin HTTP 1.1, browsers have incentive to open multiple parallel
TCP connections to reduce stalling, increase overall throughput

" no security over vanilla TCP connection

= HTTP/3: adds security, per object error- and congestion-
control (more pipelining) over UDP

 more on HTTP/3 in transport layer

Application Layer: 2-53



Application layer: overview

" E-mail, SMTP, IMAP

Application Layer: 2-54



E-mail

agent

Three major components: T
" user agents

" mail servers 00000

" simple mail transfer protocol: SMTP SI\/TITP
User Agent -

" a.k.a. “mail reader”

" composing, editing, reading mail messages 100000

user

" e.g., Outlook, iPhone mail client agent
[T outgoing

" outgoing, incoming messages stored on N message queue
server [0 user mailbox

R““agy

Application Layer: 2-55



E-mail: mail servers

mail servers:

" mailbox contains incoming
messages for user

" message queue of outgoing (to be
sent) mail messages

SMTP protocol between mail
servers to send email messages
= client: sending mail server

= “server”: receiving mail server

Sage queue

r mailbox

Application Layer: 2-56



SMTP RFC (5321)

= uses TCP to reliably transfer email message
from client (mail server initiating
connection) to server, port 25

= direct transfer: sending server (acting like client)
to receiving server

" three phases of transfer
 SMTP handshaking (greeting)
e SMTP transfer of messages
 SMTP closure
» command/response interaction (like HTTP)
e commands: ASCII text
* response: status code and phrase

“client”
SMTP server

initiate TCP
connection

RTT.
TCP connection

initiated

—

SMTP | T

handshaking

N

SMTP<
transfers

. 250 Hello

time

e
T

“server”
SMTP server

220 —

HELO \/

\ 4

Application Layer: 2-57



Scenario: Alice sends e-mail to Bob

! mail R
server Lk .3
I 3 JiT Pogh- W

RRNEN

Alice’s mail server Bob’s mail server
Application Layer: 2-59



Sample SMTP interaction

S: 220 hamburger.edu

Application Layer

:2-60



SMTP: observations

comparison with HTTP:

HTTP: client pull
SMTP: client push

both have ASCIl command/response
interaction, status codes

HTTP: each object encapsulated in its
OWnN response message

SMTP: multiple objects sent in
multipart message

= SMTP uses persistent
connections

= SMTP requires message
(header & body) to be in
7-bit ASCI|

= SMTP server uses
CRLF.CRLF to determine
end of message

Application Layer: 2-61



Mail message format

SMTP: protocol for exchanging e-mail messages, defined in RFC 5321
(like RFC 7231 defines HTTP)

RFC 2822 defines syntax for e-mail message itself (like HTML defines
syntax for web documents)

e To: blank
: ) line

* From:

e Subject:

these lines, within the body of the email

message area different fro ROM:,
RCPT TQ: S!

= Body: the “message” , ASCll characters only

Application Layer: 2-62



Retrieving email: mail access protocols

g a“gsfrftv SMTP
g\lk.l‘-! %

A

SMTP

00000

e-mail access

protocol

00000

(e.g., IMAP,
HTTP)

sender’ s e-mail receiver’ s e-mail

server

server

user o= e
— e g\
» [agent [k 8]
-
S

= SMTP: delivery/storage of e-mail messages to receiver’s server

" mail access protocol: retrieval from server

* IMAP: Internet Mail Access Protocol [RFC 3501]: messages stored on server, IMAP
provides retrieval, deletion, folders of stored messages on server

HTTP: gmail, Hotmail, Yahoo!Mail, etc. provides web-based interface on

top of STMP (to send), IMAP (or POP) to retrieve e-mail messages

Application Layer: 2-63



Application Layer: Overview

" The Domain Name System
DNS

Application Layer: 2-64



DNS: Domain Name System

people: many identifiers: Domain Name System (DNS):
* SSN, name, passport # = distributed database implemented in
Internet hosts, routers: hierarchy of many name servers
* IP address (32 bit) - used for = application-layer protocol: hosts, DNS
addressing datagrams servers communicate to resolve
* “name”, e.g., cs.umass.edu - names (address/name translation)

used by humans .
e note: core Internet function,

implemented as application-layer
protocol

Q: how to map between IP
address and name, and vice

versa ? . o ;
e complexity at network’s “edge

Application Layer: 2-65



DNS: services, structure

DNS services: Q: Why not centralize DNS?
* hostname-to-IP-address translation " Single point of failure

= traffic volume

= distant centralized database
" maintenance

" host aliasing
e canonical, alias names

" mail server aliasing

= |oad distribution A: doesn‘t scale!
* replicated Web servers: many IP = Comcast DNS servers alone:
addresses correspond to one 600B DNS queries/day
name = Akamai DNS servers alone:

2.2T DNS queries/day

Application Layer: 2-66



Thinking about the DNS

humongous distributed database:
= ~ billion records, each simple

handles many trillions of queries/day:
" many more reads than writes

" performance matters: almost every
Internet transaction interacts with
DNS - msecs count!

organizationally, physically decentralized:

" millions of different organizations
responsible for their records

“bulletproof”: reliability, security

Application Layer: 2-67



DNS: a distributed, hierarchical database

Root DNS Servers Root
.com DNS servers .org DNS servers .edu DNS servers Top Level Domain
yahoo.com amazon.com pbs.org nyu.edu umass.edu horitati
DNS servers DNS servers DNS servers DNS servers DNS servers Authoritative

Client wants IP address for www.amazon.com; 15t approximation:
= client queries root server to find .com DNS server
= client queries .com DNS server to get amazon.com DNS server

= client queries amazon.com DNS server to get |IP address for www.amazon.com

Application Layer: 2-68



Local DNS name servers

= when host makes DNS query, it is sent to its local DNS server

* Local DNS server returns reply, answering:

e from its local cache of recent name-to-address translation pairs (possibly out
of date!)

e forwarding request into DNS hierarchy for resolution

e each ISP has local DNS name server; to find yours:
* MacOS: 5 scutil --dns
* Windows: >ipconfig /all

" |ocal DNS server doesn’t strictly belong to hierarchy

Application Layer: 2-72



DNS name resolution: iterated query

root DNS server

Example: host at engineering.nyu.edu

wants IP address for gaia.cs.umass.edu , |
/ TLD DNS server
Iterated query: - T B——
= contacted server replies «,,S[ 5 5

Wlth name Of server to requesting host at  local DNS server
contact engineering.nyu.edu dns.nyu.edu _
gaia.cs.umass.edu

= “1 don’t know this name, -
but ask this server” )| g,

authoritative DNS server
dns.cs.umass.edu

Application Layer: 2-73



DNS records

DNS: distributed database storing resource records (RR)
RR format: (name, value, type, ttl)

type=A type CNAME
" name is hostname name is alias name for some “canonical”
= valueisIP address (the real) name
= www.ibm.com is really servereast.backup2.ibm.com
type=NS " value iscanonical name

= name is domain (e.g., foo.com)

= value is hostname of
authoritative name server for
this domain

type=MX
= value is name of SMTP mail
server associated with name

Application Layer: 2-76



Getting your info into the DNS

example: new startup “Network Utopia”

" register name networkuptopia.com at DNS registrar (e.g., Network
Solutions)

* provide names, IP addresses of authoritative name server (primary and
secondary)

* registrar inserts NS, A RRs into .com TLD server:
(networkutopia.com, dnsl.networkutopia.com, NS)
(dnsl.networkutopia.com, 212.212.212.1, A)

" create authoritative server locally with IP address 212.212.212.1

* type A record for www.networkuptopia.com
* type MX record for networkutopia.com

Application Layer: 2-79



Application Layer: Overview

= P2P applications

Application Layer: 2-81



Peer-to-peer (P2P) architecture

" no always-on server

= arbitrary end systems directly
communicate

" peers request service from other
peers, provide service in return to
other peers

* self scalability — new peers bring new
service capacity, and new service demands

= peers are intermittently connected
and change IP addresses
° complex management

= examples: P2P file sharing (BitTorrent),
streaming (KanKan), VolP (Skype)

Application Layer: 2-82



File distribution: client-server vs P2P

Q: how much time to distribute file (size F) from one server to
N peers?
* peer upload/download capacity is limited resource

u,: server upload
capacjty

d: peeridownload

capacity
d-/
network (with abundant > ' =b

u;: peeriupload
capacity

Introduction: 1-83



File distribution time: client-server

= server transmission: must sequentially
send (upload) N file copies:

* time to send one copy: F/u,
* time to send N copies: NF/u,

= client: each client must download
file copy
* d_..=min client download rate

* min client download time: F/d

min

time to distribute F

to N clientsusing D > maxiNF/u. . F/d. .
client-server approach <> — ? / S/ / mm}

increases linearly in N /

Introduction: 1-84



File distribution time: P2P

" server transmission: must upload at

least one copy:

* time to send one copy: F/u,

= client: each client must download

file copy

 min client download time: F/d

g

min

= clients: as aggregate must download NF bits
 max upload rate (limiting max download rate) is u, + 2u;

time to distribute F
to N clients using

P2P approach

D,,r >max{F/u_F/d . ,NF/(u, + 2u)}
, ) y

increases linearly in N ... /

... but so does this, as each peer brings service capacity

Application Layer: 2-85



Client-server vs. P2P: example

client upload rate = u, F/u=1hour, u,=10u, d_;, 2 u,

3.5
® 3 = P2P
.§ —-o— Client-Server
|_
_5 2.5
2 2
@
O 1.5
£
E
£
s 05
O I I I I I I
0 5 10 15 20 25 30 35

Application Layer: 2-86



P2P file distribution: BitTorrent

file divided into 256Kb chunks
= peers in torrent send/receive file chunks

tracker: tracks peers torrent: group of peers
participating in torrent | exchanging chunks of a file

Alice arrives ...

... obtains list

of peers from tracker
... and begins exchanging

Application Layer: 2-87



P2P file distribution: BitTorrent

peer joining torrent: E

* has no chunks, but will accumulate them £ |
over time from other peers

* registers with tracker to get list of peers,
connects to subset of peers
(“neighbors”)

while downloading, peer uploads chunks to other peers

peer may change peers with whom it exchanges chunks
churn: peers may come and go

"y

once peer has entire file, it may (selfishly) leave or (altruistically) remain

in torrent

Application Layer: 2-88



BitTorrent: requesting, sending file chunks

Requesting chunks: Sending chunks: tit-for-tat

= at any given time, different = Alice sends chunks to those four
peers have different peers currently sending her chunks
subsets of file chunks at highest rate

= periodically, Alice asks  other peers are choked by Alice (do
each peer for list of chunks not receive chunks from her)
that they have * re-evaluate top 4 every10 secs

= Alice requests missing = every 30 secs: randomly select
chunks from peers, rarest another peer, starts sending
first chunks

* “optimistically unchoke” this peer
* newly chosen peer may join top 4

Application Layer: 2-89



BitTorrent: tit-for-tat

(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better trading
partners, get file faster !

Application Layer: 2-90



Application layer: overview

= video streaming and content
distribution networks

Application Layer: 2-91



Video Streaming and CDNSs: context

" stream video traffic: major

consumer of Internet bandwidth

* Netflix, YouTube, Amazon Prime: 80% of
residential ISP traffic (2020)

® challenge: scale - how to reach
~1B users?

= challenge: heterogeneity HOY Y azss

— RSN ER—

= different users have different capabilities (e.g., wired ﬁ
versus mobile; bandwidth rich versus bandwidth poor) Cﬂkamai

" solution: distributed, application-level infrastructure You

Application Layer: 2-92



Multimedia: video

" video: sequence of images
displayed at constant rate

* e.g., 24 images/sec
= digital image: array of pixels
e each pixel represented by bits
= coding: use redundancy within and

between images to decrease # bits
used to encode image

e spatial (within image)
* temporal (from one image to
next)

spatial coding example: instead
of sending N values of same
color (all purple), send only two
values: color value (purple) and
number of repeated values (N)

frame |

temporal coding example:
instead of sending
complete frame at i+1,
send only differences from
frame i

frame j+1

Application Layer: 2-93



Multimedia: video

*= CBR: (constant bit rate): video
encoding rate fixed

= VVBR: (variable bit rate): video
encoding rate changes as
amount of spatial, temporal
coding changes

= examples:
e MPEG 1 (CD-ROM) 1.5 Mbps
* MPEG2 (DVD) 3-6 Mbps

 MPEG4 (often used in
Internet, 64Kbps — 12 Mbps)

spatial coding example: instead

of sending N values of same

color (all purple), send only two
values: color value (purple) and
number of repeated values (N)

frame |

temporal coding example:
instead of sending
complete frame at i+1,
send only differences from
frame i

frame j+1

Application Layer: 2-94



Streaming stored video

simple scenario:

: "
=y
_I Internet

video server
(stored video)

client

Main challenges:

= server-to-client bandwidth will vary over time, with changing network

congestion levels (in house, access network, network core, video
server)

= packet loss, delay due to congestion will delay playout, or result in
poor video quality

Application Layer: 2-95



Streaming stored video

Cumulative data

2. video :
, sent . . .
1. v@\ / — 3. video received, played out at client
recorded 7/ (30 frames/sec)

eg, 30 Vv /7 = > —
1(°ra§nes/sec)°'é) — network delay time
TS (fixed in this :
= OXBMPIE) 1
1 . streaming: at this time, client playing out

. early part of video, while server still sending

Application Layer: 2-96



Streaming stored video: challenges

® continuous playout constraint: during client
video playout, playout timing must match
original timing

e ... but network delays are variable (jitter), so will
need client-side buffer to match continuous playout
constraint

= other challenges:

e client interactivity: pause, fast-forward, rewind,
jump through video

* video packets may be lost, retransmitted

Application Layer: 2-97



Streaming stored video: playout buffering

constant bit — —
rate video client video J constant bit
transmission reception rate video

| | playout at client
variable ‘ |

network -

client playout
delay

= client-side buffering and playout delay: compensate for
network-added delay, delay jitter

Cumulative data

_buffered
__video

time

Application Layer: 2-98



. . . Dynamic, Adaptive
Streaming multimedia: DASH  ¢reaming over HTTP

server.
= divides video file into multiple chunks W=
= each chunk encoded at multiple different rates D . ’5’

)--.:._
: . C : ’P“”’"‘u
= different rate encodings stored in different files >$ J
)--.-.-:._

= files replicated in various CDN nodes
= manifest file: provides URLs for different chunks ,g,

o0,
client
client:
= periodically estimates server-to-client bandwidth
= consulting manifest, requests one chunk at a time

* chooses maximum coding rate sustainable given current bandwidth

e can choose different coding rates at different points in time (depending
on available bandwidth at time), and from different servers

Application Layer: 2-99



Streaming multimedia: DASH

" “intelligence” at client: client
determines

* when to request chunk (so that buffer
starvation, or overflow does not occur)

* what encoding rate to request (higher
guality when more bandwidth
available)

* where to request chunk (can request

from URL server that is “close” to

client or has high available
bandwidth)

W=

)
E —_— -
E )=
= client

Q:;, —— s
S —

Streaming video = encoding + DASH + playout buffering

Application Layer: 2-100



Content distribution networks (CDNs)

challenge: how to stream content (selected from millions of
videos) to hundreds of thousands of simultaneous users?

" option 1: single, large “mega-
server”
* single point of failure
* point of network congestion

* long (and possibly congested)
path to distant clients

....quite simply: this solution doesn’t scale

Application Layer: 2-101



Content distribution networks (CDNs)

challenge: how to stream content (selected from millions of
videos) to hundreds of thousands of simultaneous users?

= option 2: store/serve multiple copies of videos at multiple
geographically distributed sites (CDN)

* enter deep: push CDN servers deep into many access networks
* close to users

e Akamai: 240,000 servers deployed F
in > 120 countries (2015)

* bring home: smaller number (10’s) of
larger clusters in POPs near access nets | . :
* used by Limelight ]Ll me“gDEENGRKS

Application Layer: 2-102



Content distribution networks (CDNs)

= CDN: stores copies of content (e.g. MADMEN) at CDN nodes

= subscriber requests content, service provider returns manifest

* using manifest, client retrieves content at highest supportable rate
* may choose different rate or copy if network path congested

IADMEN

I

e
i
where’s Maumen's

-9

=\
=1

Application Layer: 2-103



Content distribution networks (CDNs)

P F

| OTT: “over the top/” W

g F EF , f

Internet host-host communication as a service

OTT challenges: coping with a congested Internet from the “edge”
= what content to place in which CDN node?
= from which CDN node to retrieve content? At which rate?

Application Layer: 2-104



Application Layer: Overview

= socket programming with
UDP and TCP

Application Layer: 2-105



Socket programming

goal: learn how to build client/server applications that
communicate using sockets

socket: door between application process and end-end-transport
protocol

application

socket \

[~

application

controlled by
app developer

controlled

| q ‘ Internet X w

Application Layer: 2-106



Socket programming

Two socket types for two transport services:
"= UDP: unreliable datagram
= TCP: reliable, byte stream-oriented

Application Example:
1. client reads a line of characters (data) from its keyboard and sends
data to server
2. server receives the data and converts characters to uppercase
3. server sends modified data to client
4. client receives modified data and displays line on its screen

Application Layer: 2-107



Socket programming with UDP

UDP: no “connection” between
client and server:
" no handshaking before sending data

= sender explicitly attaches IP destination
address and port # to each packet

= recejver extracts sender IP address and
port# from received packet

UDP: transmitted data may be lost or received out-of-order

Application viewpoint:
= UDP provides unreliable transfer of groups of bytes (“datagrams”)
between client and server processes

Application Layer: 2-108



Client/server socket interaction: UDP

: . ‘
i SerVer (running on serverlP) client 4-%

C——)

create socket:
clientSocket =

serverSocket = socket(AF_INET,SOCK_DGRAM)
socket(AF_INET,SOCK_DGRAM)

create socket, port= x:

Create datagram with serverlP address

l And port=x; send datagram via
read datagram from clientSocket

serverSocket
write reply to  —
serverSocket — read datagram from
specifying clientSocket
client address, 1
port number close

clientSocket

Application Layer: 2-109



Example app: UDP client

Python UDPClient

include Python’s socket library — from socket import *
serverName = ‘hostname’

serverPort = 12000

create UDP socket for server — clientSocket = socket(AF INET,
SOCK_DGRAM)

get user keyboard input —> message = raw_input(’Input lowercase sentence:’)
attach server name, port to message; send into socket —» clientSocket.sendto(message.encode(),

(serverName, serverPort))
read reply characters from socket into string — modified Message, serverAddress =

clientSocket.recvfrom(2048)
print out received string and close socket —» print modified Message_decode()
clientSocket.close()

Application Layer: 2-110



Example app: UDP server
Python UDPServer

from socket import *
serverPort = 12000
create UDP socket —» serverSocket = socket(AF _INET, SOCK DGRAM)
bind socket to local port number 12000 —> serverSocket.bind((", serverPort))
print (“The server is ready to receive”)

loop forever — While True:
Read from UDP socket into message, getting —> message, clientAddress = serverSocket.recvfrom(2048)
client’s address (client IP and port) modifiedMessage = message.decode().upper()

send upper case string back to this client —>  serverSocket.sendto(modifiedMessage.encode(),
clientAddress)

Application Layer: 2-111



Socket programming with TCP

Client must contact server

= server process must first be
running

= server must have created socket
(door) that welcomes client’s
contact

Client contacts server by:

= Creating TCP socket, specifying IP
address, port number of server
process

= when client creates socket: client
TCP establishes connection to
server TCP

= when contacted by client, server
TCP creates new socket for server
process to communicate with that

particular client

 allows server to talk with multiple
clients

e source port numbers used to
distinguish clients (more in Chap 3)

— Application viewpoint
TCP provides reliable, in-order
byte-stream transfer (“pipe”)

between client and server
processes

Application Layer: 2-112



Client/server socket interaction: TCP

oot lient o
ServVer (running on hostid) clien s

create socket,

port=x, for incoming
request:

serverSocket = socket()

wait for incoming TCP create socket,

connection reqUESt €= == == == == == == =P connectto hostid, port=x
connectionSocket = CONNection setup clientSocket = socket()

serverSocket.accept()

—_— l send request using
read request from / clientSocket
connectionSocket

write reply to — .

connectionSocket

y

— read reply from
clientSocket

close 1
connectionSocket clgse v
clientSocket

Application Layer: 2-113



Example app: TCP client

Python TCPClient

from socket import *
serverName = 'servername’
serverPort = 12000

create TCP socket for server, — clientSocket = SOCke’[(AF_lNE
remote port 12000 clientSocket.connect((serverName,serverPort))

sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence.encode())

No need to attach server name, port —— ModifiedSentence = clientSocket.recv(1024)
print (‘From Server:’, modifiedSentence.decode())
clientSocket.close()

Application Layer: 2-114



Example app: TCP server

create TCP welcoming socket ——

server begins listening for
incoming TCP requests

loop forever ——

server waits on accept() for incoming ——
requests, new socket created on return

read bytes from socket (but —
not address as in UDP)

close connection to this client (but not —
welcoming socket)

Python TCPServer

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((",serverPort))
serverSocket.listen(1)
print ‘The server is ready to receive’
while True:
connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024).decode()
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence.
encode())
connectionSocket.close()

Application Layer: 2-115



Chapter 2: Summary

our study of network application layer is now complete!

= gpplication architectures = specific protocols:
Pp P P
e client-server * HTTP
e P2P * SMTP, IMAP
e DNS

= application service requirements:

o . * P2P: BitTorrent
* reliability, bandwidth, delay

= video streaming, CDNs
" |[nternet transport service model = socket programming:

e connection-oriented, reliable: TCP TCP, UDP sockets
* unreliable, datagrams: UDP

Application Layer: 2-116



Chapter 2: Summary

Most importantly: learned about protocols!

= typical request/reply message important themes:
exchange: = centralized vs. decentralized
* client requests info or service ® stateless vs. stateful
* server responds with data, status code = scalability
" message formats: = reliable vs. unreliable
* headers: fields giving info about data message transfer
* data: info(payload) being = “complexity at network

communicated

edge”

Application Layer: 2-117



Additional Chapter 2 slides

Application Layer: 2-118



Sample SMTP interaction

S: 220 hamburger.edu
C: HELO crepes.fr

250 Hello crepes.fr, pleased to meet you

MAIL FROM: <alice@crepes.fr>

250 alice@crepes.fr... Sender ok

RCPT TO: <bob(@hamburger.edu>

250 bob@hamburger.edu ... Recipient ok

DATA

354 Enter mail, end with "." on a line by itself

Do you like ketchup?
How about pickles?

250 Message accepted for delivery
QUIT
221 hamburger.edu closing connection

nh OQOnhoonoQnonQunQ wn

Application Layer: 2-119



CDN content access: a closer look

Bob (client) requests video http://netcinema.com/6Y7B23V
= video stored in CDN at http://KingCDN.com/NetC6y&B23V

! 2. resolve http://netcinema.com/6Y7B23V
"‘ W Bob's local DNS

6. request video from Bob’s
KINGCDN server, / local DNS
streamed via HTTP server

netci 3. netcinema’s DN$ UHSENAME for
http://KingCDN.com/MstC6y&B23V

- LJ'E?

w4

1. Bob gets URL for video
http://netcinema.com/6Y7B23V

from netcinema.com web page

Application Layer: 2-120



Case study: Netflix

Netflix registration,
accounting servers

Bob browses
Netflix video

Eﬂ @

Bob manages
Netflix account

Amazon cloud

||

3

)

upload copies of
multiple versions of
video to CDN servers

CDN
server
N ] CDN
Manifest file, AN E
server
requested AN
returned for \

specific video

CDN
server

DASH server
selected, contacted,
streaming begins

Application Layer: 2-121



	Slide 1
	Slide 2: Application layer: overview
	Slide 4: Some network apps
	Slide 5: Creating a network app
	Slide 6: Client-server paradigm
	Slide 7: Peer-peer architecture
	Slide 8: Processes communicating
	Slide 9: Sockets
	Slide 10: Addressing processes
	Slide 11: An application-layer protocol defines:
	Slide 12: What transport service does an app need?
	Slide 13: Transport service requirements: common apps
	Slide 14: Internet transport protocols services
	Slide 15: Internet applications, and transport protocols
	Slide 16: Securing TCP
	Slide 17: Application layer: overview
	Slide 18: Web and HTTP
	Slide 19: HTTP overview
	Slide 21: HTTP overview (continued)
	Slide 22: HTTP connections: two types
	Slide 26: Non-persistent HTTP: response time
	Slide 28: Persistent HTTP (HTTP 1.1)
	Slide 29: HTTP request message
	Slide 30: HTTP request message: general format
	Slide 32: HTTP response message
	Slide 33: HTTP response status codes
	Slide 36: Maintaining user/server state: cookies
	Slide 38: Maintaining user/server state: cookies
	Slide 39: HTTP cookies: comments
	Slide 41: Web caches
	Slide 42: Web caches (aka proxy servers)
	Slide 43: Caching example
	Slide 48: Conditional GET
	Slide 50: HTTP/2
	Slide 51
	Slide 52: HTTP/2: mitigating HOL blocking
	Slide 53: HTTP/2 to HTTP/3
	Slide 54: Application layer: overview
	Slide 55: E-mail
	Slide 56: E-mail: mail servers
	Slide 57: SMTP RFC (5321)
	Slide 59: Scenario: Alice sends e-mail to Bob
	Slide 60: Sample SMTP interaction
	Slide 61: SMTP: observations
	Slide 62: Mail message format
	Slide 63: Retrieving email: mail access protocols
	Slide 64: Application Layer: Overview
	Slide 65: DNS: Domain Name System
	Slide 66: DNS: services, structure
	Slide 67: Thinking about the DNS
	Slide 68: DNS: a distributed, hierarchical database
	Slide 72: Local DNS name servers
	Slide 73: DNS name resolution: iterated query
	Slide 76: DNS records
	Slide 79: Getting your info into the DNS
	Slide 81: Application Layer: Overview
	Slide 82: Peer-to-peer (P2P) architecture
	Slide 83: File distribution: client-server vs P2P
	Slide 84: File distribution time: client-server
	Slide 85: File distribution time: P2P
	Slide 86: Client-server vs. P2P: example
	Slide 87: P2P file distribution: BitTorrent 
	Slide 88: P2P file distribution: BitTorrent 
	Slide 89: BitTorrent: requesting, sending file chunks
	Slide 90: BitTorrent: tit-for-tat
	Slide 91: Application layer: overview
	Slide 92: Video Streaming and CDNs: context
	Slide 93: Multimedia: video
	Slide 94: Multimedia: video
	Slide 95: Streaming stored video
	Slide 96: Streaming stored video
	Slide 97: Streaming stored video: challenges
	Slide 98: Streaming stored video: playout buffering
	Slide 99: Streaming multimedia: DASH
	Slide 100: Streaming multimedia: DASH
	Slide 101: Content distribution networks (CDNs)
	Slide 102: Content distribution networks (CDNs)
	Slide 103: Content distribution networks (CDNs)
	Slide 104: Content distribution networks (CDNs)
	Slide 105: Application Layer: Overview
	Slide 106: Socket programming 
	Slide 107: Socket programming 
	Slide 108: Socket programming with UDP 
	Slide 109: Client/server socket interaction: UDP
	Slide 110: Example app: UDP client
	Slide 111: Example app: UDP server
	Slide 112: Socket programming with TCP
	Slide 113: Client/server socket interaction: TCP
	Slide 114: Example app: TCP client
	Slide 115: Example app: TCP server
	Slide 116: Chapter 2: Summary
	Slide 117: Chapter 2: Summary
	Slide 118: Additional Chapter 2 slides
	Slide 119: Sample SMTP interaction
	Slide 120: CDN content access: a closer look
	Slide 121: Case study: Netflix

