

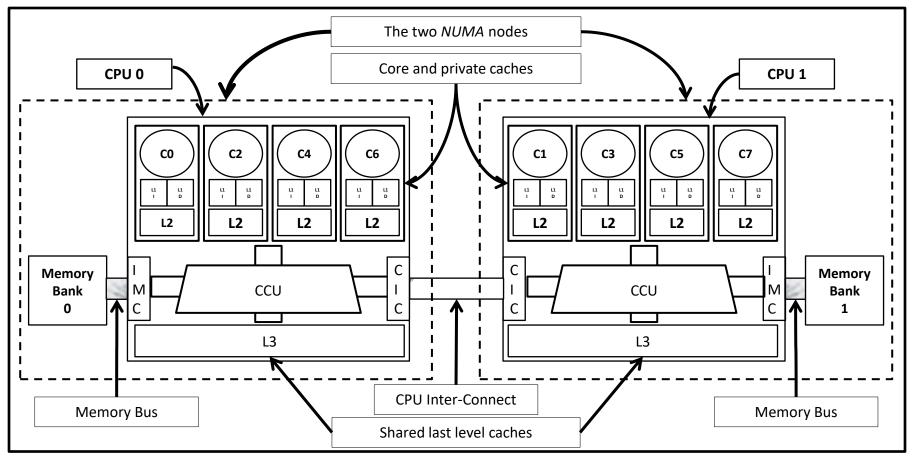
Large-scale Distributed Systems and Networks (Storskaliga Distribuerade System och Nätverk)

Slides by Niklas Carlsson (including slides based on slides by P. Gill and Y. Shavitt)

Systems thinking

- We want to understand the full system and the ecosystem it operates within; e.g.,
 - Understanding the full system
 - Looking at the parts and how they interact
- This course provide many examples ...

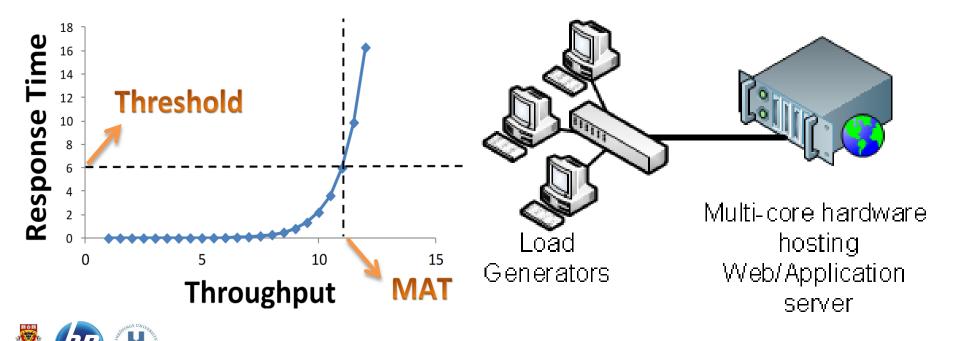
Measurements


- It has often been stated that
 - "you can't manage what you can't measure" ...
- Effective tool to understand, model, test, and improve existing systems ...
 - E.g., often want to identify (and fix) system bottlenecks

Multicore systems

NUMA Architecture

An example of a two processor eight core NUMA system

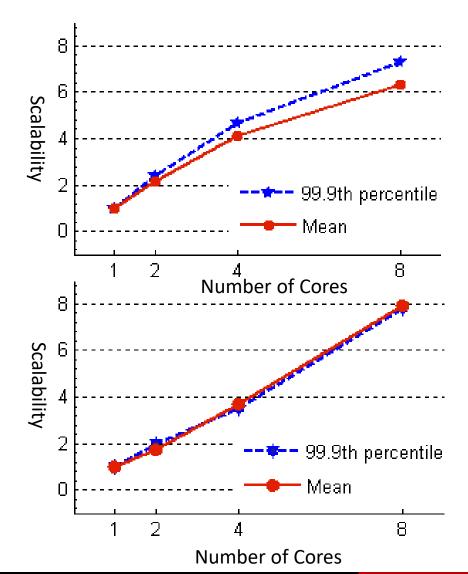

-1

Improving the Scalability of a Multi-core Web Server

Scalability Evaluation Measurements

- E.g., Measure Web server scalability for workloads [ICPE '13]
 - Typically want to provide some 99% response time
 - Example scalability measure: Maximum Achievable
 Throughput (MAT)

4



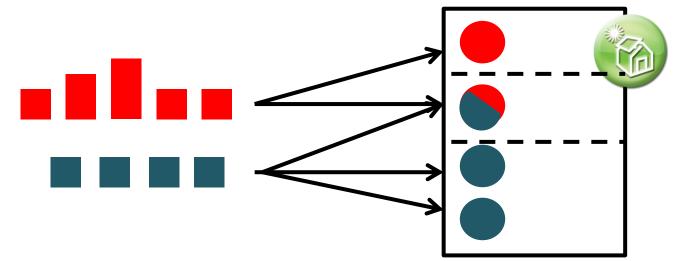
SCALABILITY EVALUATION

- TCP/IP Intensive workload
 - Sub-linear
 - Maximum Achievable Throughput
 - 146,000 req/sec
- SPECweb Support workload
 - Almost linear

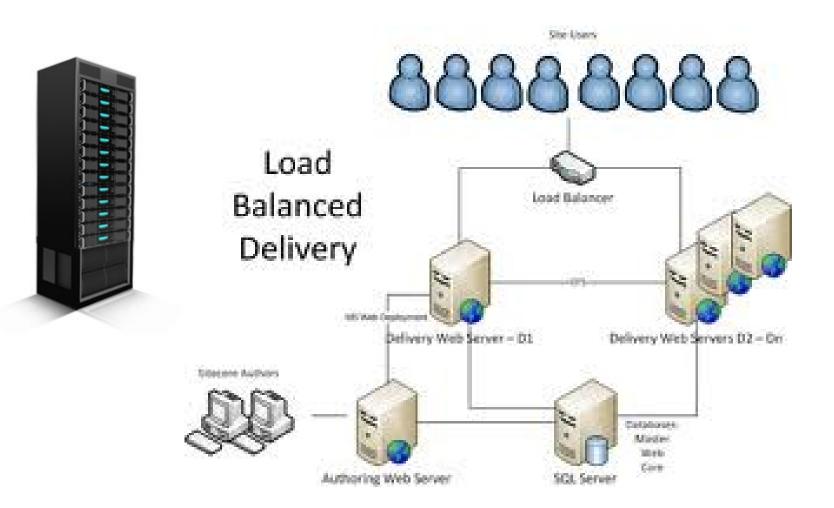
9

- Maximum Achievable Throughput
 - 23,000 req/sec

Improving the Scalability of a Multi-core Web Server


ICPE13

Identification of bottlenecks


- E.g., memory, CPU, network, cache hierarchy, interconnect bus, scheduler, ...
 - Black-box testing
 - Low-level instrumentation

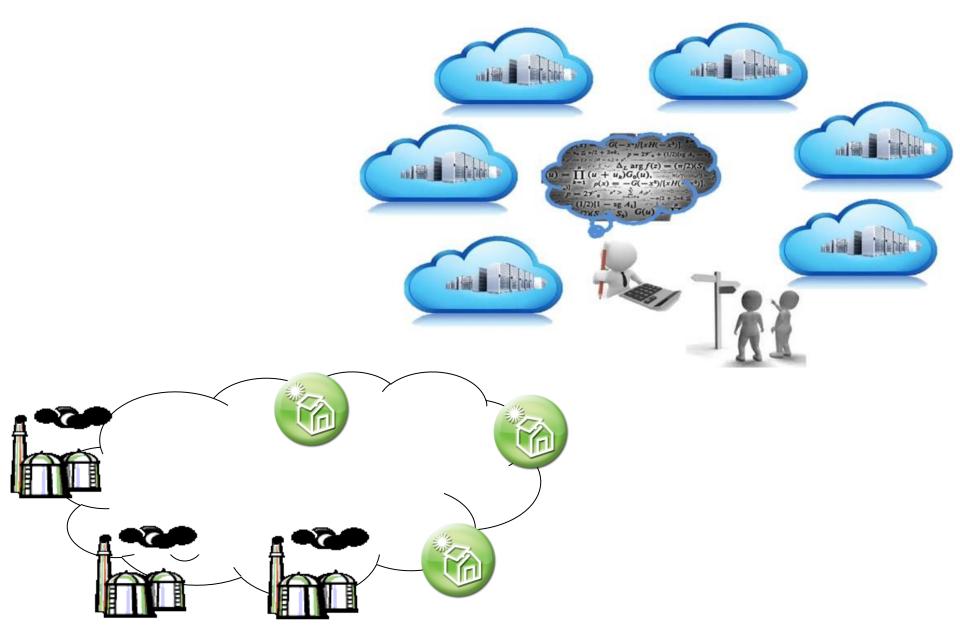
Identification of bottlenecks

- E.g., memory, CPU, network, cache hierarchy, interconnect bus, scheduler, ...
 - Black-box testing
 - Low-level instrumentation
- Multiple workloads ...

Often many servers (and racks)

... and data centers ...

... cost-efficient delivery ...



... and different flexibility ...

• Minimize content delivery costs

		Bandwidth	Cost		
	Cloud-based	Elastic/flexible	\$\$\$		
	Dedicated servers	Capped	\$		
How to get the best of two worlds?					
S	cloud servers				

... and from who?

Measurements of Distributed Systems and Networks

Let's consider the Internet itself

- We are very reliant on the Internet
 - Today, it is hard to imagine a world without the internet
 - Yet it is growing increasingly complex ...
- Today: Wide area network that is too complex to fully grasp
 Many protocols at various levels interact and effect behavior
- Many applications have performance requirements
 - End-to-end delay, loss, reliability, ...
- It is an interesting complex system with emergent characteristics like many living systems
 - Biological systems
 - Social networks

Internet Measurement Challenges

- Network size [quick "guestimates" ...]
 - ~ O(1B) hosts in DNS, billions of users (and routers), ~O(100K)
 ASes, 20-30 billion connected devices ...
- Network Complexity
 - Interaction between components, protocols, applications, users
- All change over time
 - New applications are added
 - New protocol versions (TCP, QUIC, ...)
 - New router design (AQM)

Why do we measure the Internet?

- Already mentioned
 - Because it is there!
 - Operational reasons
- We cannot improve the Internet if we don't understand it
 - We cannot understand it if we don't measure
 - We cannot build effective models or simulators if we don't measure

What can we measure on the Internet?

- Structure
 - Topology (router/network) connectivity, link capacities, link loss, available bandwidth, routing, ...
- Traffic
 - End-to-end performance, packet arrival process (congestion built-up), ...
- Users and applications
 - WWW, peer-to-peer, streaming, gaming, ...
- Malicious behavior (and vulnerabilities)
 Attack patterns, port scans, ...

Where can we measure the Internet?

How to chose representative measurement points?

Example: traffic samples

- LAN traffic vs. WAN traffic
- Inside an ISP vs. between continents
- Country biases
- Commercial location vs. educational
- More locations is better, BUT most of all, one point is better than no point

How can we measure the Internet?

- Active measurements
 - Probes: Traceroute, ping, packet trains
 - Application simulation

- Passive measurement
 - Logs (WWW)
 - Monitors, sniffers

When should we measure the Internet?

- Diurnal and weekly traffic cycles
- Time scales depend on "what" and "how"
- Passive measurement are typically continuous
 - Can generate huge datasets
 - Log access problems
 - Privacy concerns
- Active measurements are typically discrete
 - Important characteristics can be missed
 - Probes can be filtered and/or detected

Who is measuring the Internet?

- Businesses do a great deal of measurement
 - Mostly do not share with the research community
 - examples:
 - Akamai: http delay from server side
 - Google: everything
- Academia and Research institutes
 - Publish papers, but data may not always be available
 - Inform public and make recommendations
- Governments and their affiliates (e.g., MSB)

Publishing Internet Measurement Studies

- All major networking conferences & journals accept measurement papers
 - ACM SIGCOMM, IEEE INFOCOM, ACM SIGMETRICS
 IEEE/ACM ToN, IEEE TPDS
- Dedicated meetings
 - ACM Internet Measurement Conf. (IMC)
 - Passive & Active Measurements Conf. (PAM)

E.g., PAM 2024 (2 weeks ago, on YouTube soon ...)

Active Measurement Techniques

Active Probes

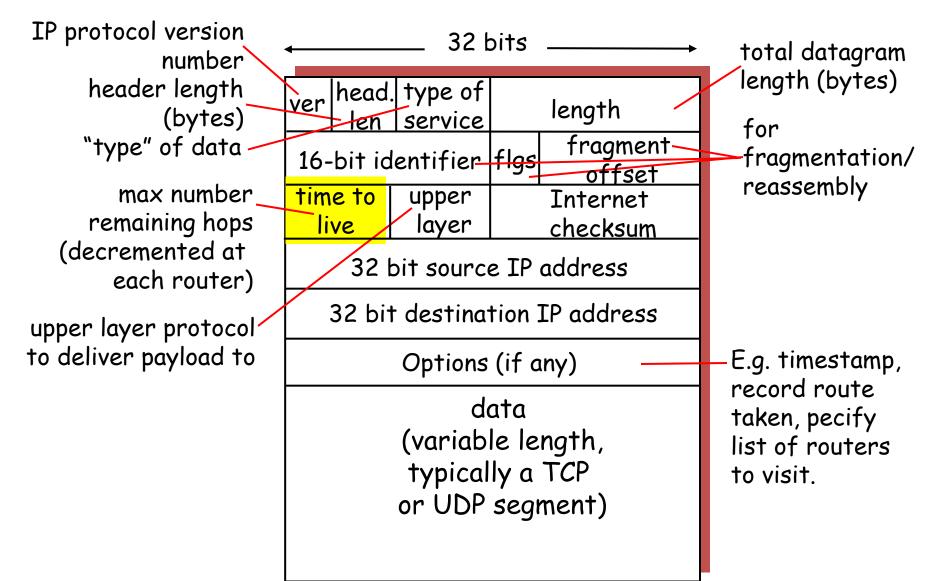
- Active probes send stimulus (packets) into the network and then measure the response
 - Done on network, transport and application layers
- Active probes are useful to measure various things:
 - Delay, delay jitter, and loss
 - Topology and routing behavior
 - Capacity, bandwidth, and throughput

Example: RTT

ICMP

ICMP is the IP error diagnosis protocol.

IP header				
Туре	Code			
Checksum				
Sequence number				
Any ICMP data				


	ICMP Message Types	
Type No.	Meaning	
0	Echo reply	×
3	Destination unreachable	
4	Source quench	PING
5	Redirect	
8	Echo	
9	Router advertisement	
10	Router solicitation	
11	Time exceeded	
12	Parameter problem	
13	Timestamp	
14	Timestamp reply	
15	Information requeste	
16	Information reply	

Application layer "ping"

- One can generate application layer messages to test application reaction time
- Most common:
 - TCP SYN message to port 80

Example: Path

IP datagram format

		-
ICMP Message Types		
Type No.	Meaning	
0	Echo reply	
3	Destination unreachable	$\left\{ \right.$
4	Source quench	
5	Redirect	
8	Echo	
9	Router advertisement	
10	Router solicitation	
11	Time exceeded	
12	Parameter problem	
13	Timestamp	
14	Timestamp reply	
15	Information requeste	
16	Information reply	
		1

Type Code description

0

1

2

3

6

7

3

3

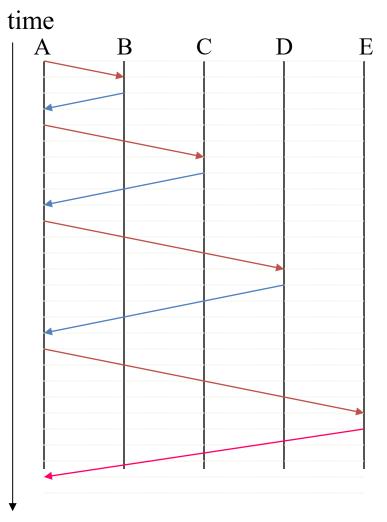
3

3

3

3

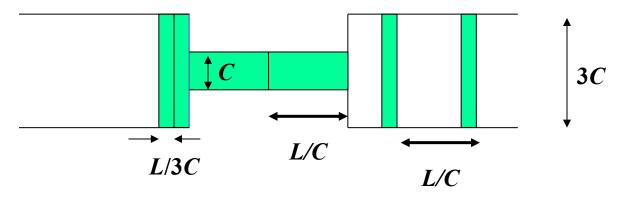
- dest. network unreachable
 - dest host unreachable
- dest protocol unreachable
- dest port unreachable
- dest network unknown
- dest host unknown


traceroute

traceroute

Regular UDP packetssuccessive TTLs

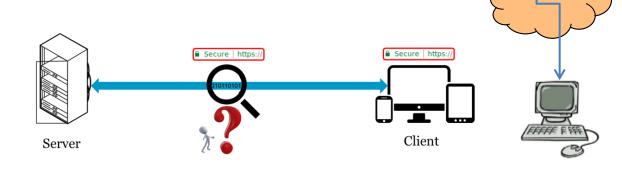
ICMP "TTL expired" message


ICMP "port unreachable" message

Example: Bottleneck capacity

Packet Dispersion to Estimate Capacity

- Packet transmission time: $\tau = L/C$
- Send two packets back-to-back
- Measure dispersion Δ at the receiver
- Estimate C as L/Δ



- But cross-traffic 'noise' can effect Δ .
- E.g., patchar "allows any user to find (estimate) the bandwidth, delay, average queue and loss rate of every hop between any source & destination on the Internet"

Passive Measurement Techniques

Passive packet measurement

- Capture packets as they pass by
 - Packet capture applications (e.g., tcpdump) on hosts use packet capture filter
 - Requires access to the wire
 - Promiscuous mode or mirror ports to see other traffic
 - Hardware-based solutions
 - Endace, Inc.'s DAG cards for monitoring almost every type of network interface
 - Programmable NIC cards (<\$100)
- Example issues:
 - Timestamps
 - Data volumes
 - Privacy

Passive IP flow measurement

• An IP flow is defined by the five-tuple:

– src addr, src port, dst addr, dst port, protocol

• Cisco's NetFlow

Provide template-based flow records

• Many tools can manipulate NetFlow data

tcpdump

- Can capture entire packet or *n* first bytes
- Timestamps each packet
- Can filter based on any combination of header field

HTTP Logs

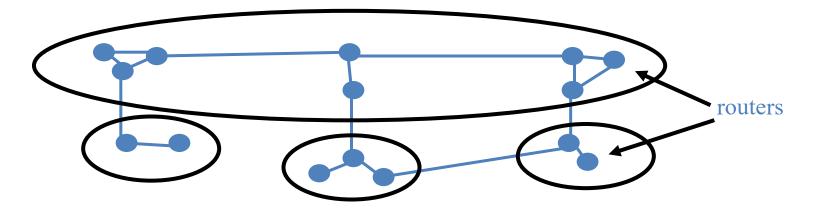
 Have data about the client IP, transaction time, command (GET/POST), return code, bytes transferred, referrer, metadata (browser type, OS, languages, etc.)

Tools are available to analyze HTTP logs
 Webalizer

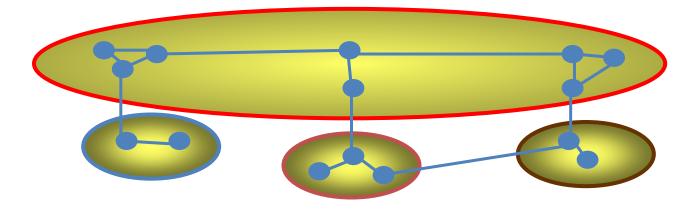
[root@jupiter httpd]# grep "GET / " access_log |tail -10

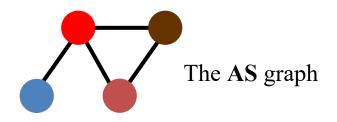
- 68.54.223.47 - [19/May/2005:12:36:20 +0300] "GET / HTTP/1.1" 200 14067 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)"
- 132.76.80.118 - [19/May/2005:12:49:44 +0300] "GET / HTTP/1.1" 304 -"http://www.eng.tau.ac.il/~shavitt/" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)"
- 24.169.148.213 - [19/May/2005:13:06:58 +0300] "GET / HTTP/1.1" 200 14067 "-" "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.8) Gecko/20050511 Firefox/1.0.4"
- 84.170.181.64 - [19/May/2005:13:07:14 +0300] "GET / HTTP/1.1" 200 14067 "http://www.google.de/search?hl=de&q=dimes&meta=" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)"
- 130.240.136.220 - [19/May/2005:13:07:25 +0300] "GET / HTTP/1.1" 304 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322)"
- 81.72.13.30 - [19/May/2005:13:11:00 +0300] "GET / HTTP/1.1" 200 14067 "http://www.miranet.it/php/Articolo.php?id=708" "Mozilla/4.0 (compatible; MSIE 6.0; Windows 98)"
- 194.78.199.123 - [19/May/2005:13:13:44 +0300] "GET / HTTP/1.1" 200 14067 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; .NET CLR 1.1.4322)"
- 82.152.182.12 - [19/May/2005:13:23:10 +0300] "GET / HTTP/1.1" 200 14067 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)"
- 80.119.126.44 - [19/May/2005:13:38:08 +0300] "GET / HTTP/1.1" 200 14067 "-" "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.8) Gecko/20050511 Firefox/1.0.4"
- 80.250.186.101 - [19/May/2005:13:46:14 +0300] "GET / HTTP/1.1" 200 14067 "http://distributed.ru/forum/?a=topic&topic=583" "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.8) Gecko/20050511 Firefox/1.0.4"

Other examples

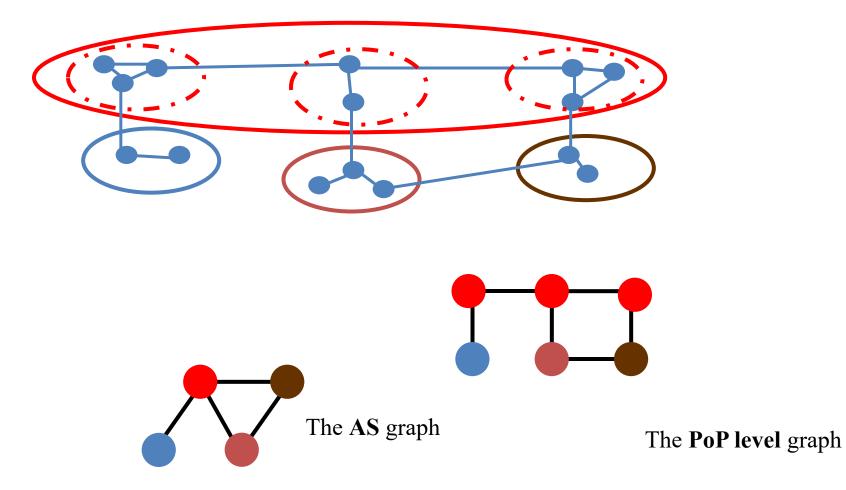

- Zeek (formerly Bro)
 - Open-source network security monitoring tool that allows easy extraction of information from the network traffic
 - Flexible and powerful when wanting to extract information from the various network layers
 - Typically use scripts to create logs
- Wireshark (used in labs)
 - Has "cute" user interface, is more "plug-and-play", and faster to get up-to-speed

Measuring the Internet's topology

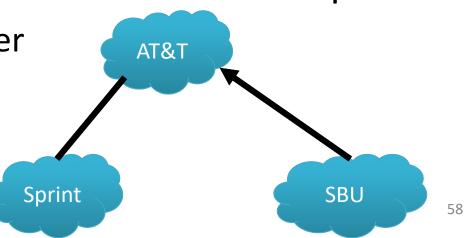

Outline


- Background
- Then, both active and passive examples ...

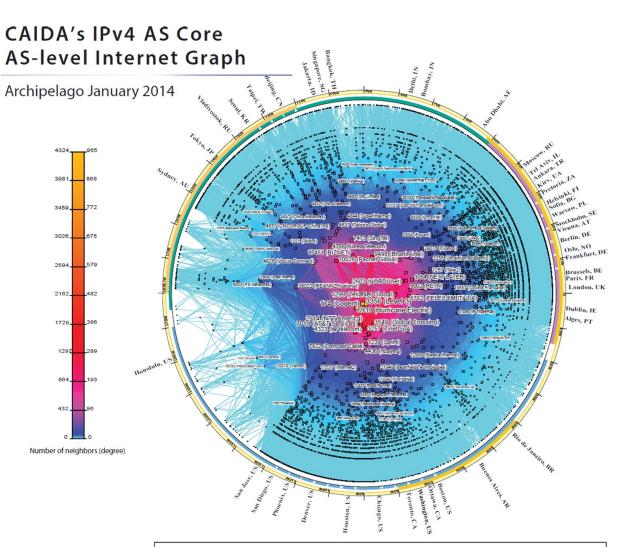
The Internet Structure



The Internet Structure



The Internet Structure


Measuring the Internet's topology

- What do we mean by topology?
 - Internet as graph
 - Edges? Nodes?
 - Node = Autonomous System (AS)
 - Edge = connection.
- Edges labeled with business relationship
 - Customer \rightarrow Provider
 - Peer -- Peer

The outputs

15412	12041	p2c
15412	12486	p2c
15412	12880	p2c
15412	13810	p2c
15412	15802	p2c
15412	17408	p2c
15412	17554	p2c
15412	17709	p2c
15412	18101	p2c
15412	19806	p2c
15412	19809	p2c
15413		

Copyright © 2014 UC Regents. All rights reserved.

So how do we measure this graph?

- Passive approach: BGP route monitors
 - Coverage of the topology
 - Amount of visibility provided by each neighbor
- Active approach: Traceroute
 - From where?
 - Traceroute gives series of IP addresses not ASes

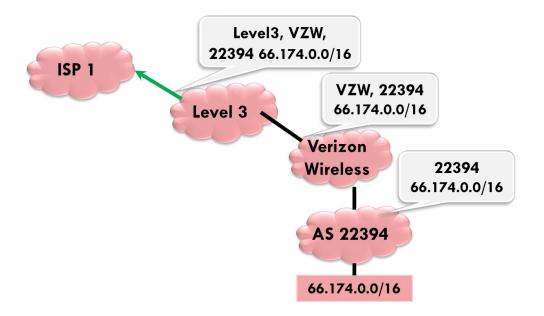
Passive approach: BGP Route Monitors

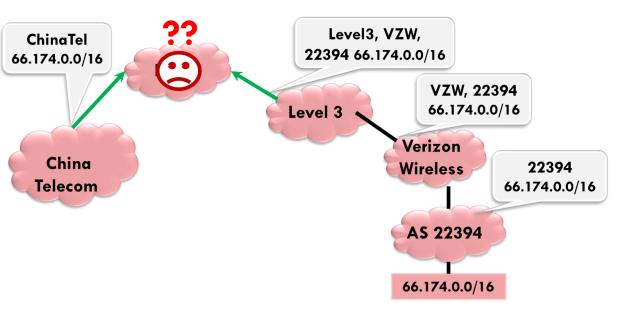
 Receive BGP announcements from participating ASes at multiple vantage points

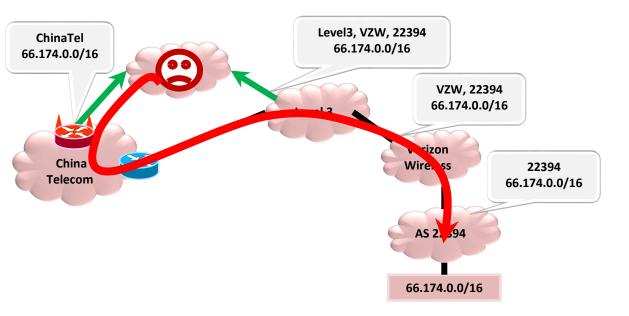
Going from BGP Updates to a Topology

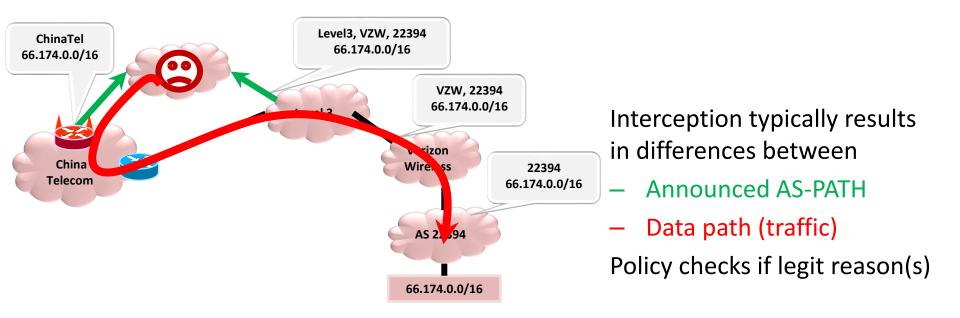
Example update:

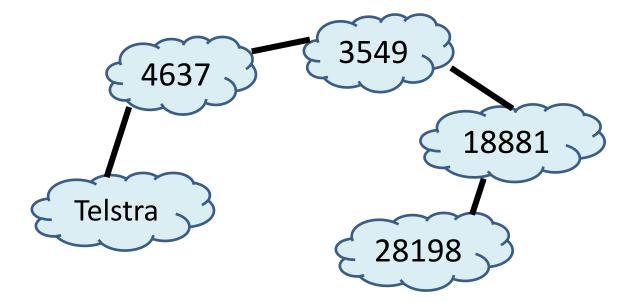
- TIME: 03/22/11 12:10:45
- FROM: 12.0.1.63 AS7018

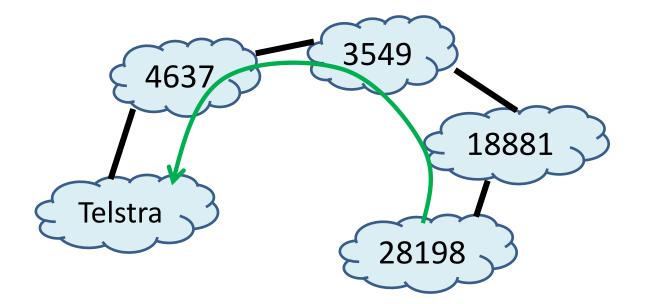

AT&T (AS7018) it telling Routeviews (AS 6447) about this route.


- TO: 128.223.51.102 AS6447
- ASPATH: 7018 4134 9318 32934 32934 32934
- 69.171.224.0/20


This /20 prefix can be reached via the above path


Going from BGP Updates to a Topology

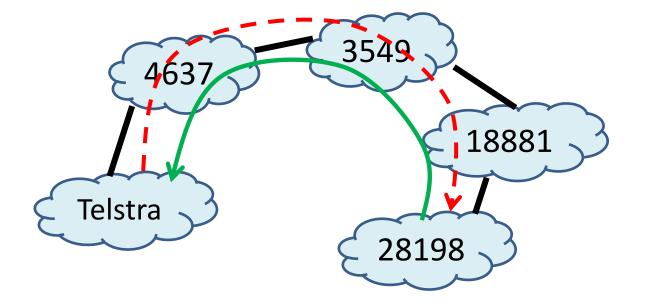

- Key idea
 - The business relationships determine the routing policies
 - The routing policies determine the paths that are chosen
 - So, look at the chosen paths and infer the policies
- Example: AS path "7018 4134 9318" implies
 - AS 4134 allows AS 7018 to reach AS 9318
 - China Telecom allows AT&T to reach Hanaro Telecom
 - Each "triple" tells something about transit service



Sometimes differences

- Announced AS-PATH
- Data path (traffic)

Many legit reason(s)

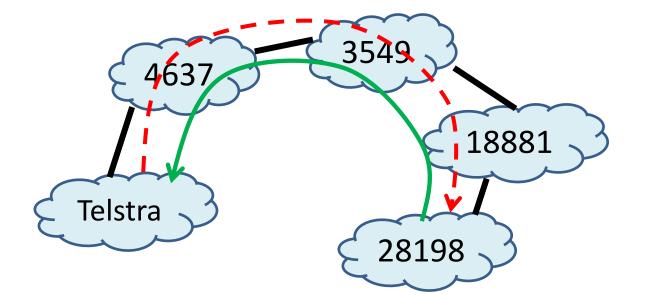


Sometimes differences

- Announced AS-PATH
- Data path (traffic)

Many legit reason(s)

AS-PATH: 177.52.48.0/21 | 1221 4637 3549 18881 28198



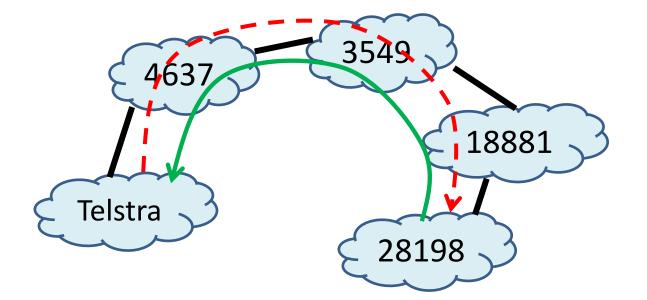
Sometimes differences

- Announced AS-PATH
- Data path (traffic)

Many legit reason(s)

AS-PATH: 177.52.48.0/21 1221 4637 3549 18881 28198

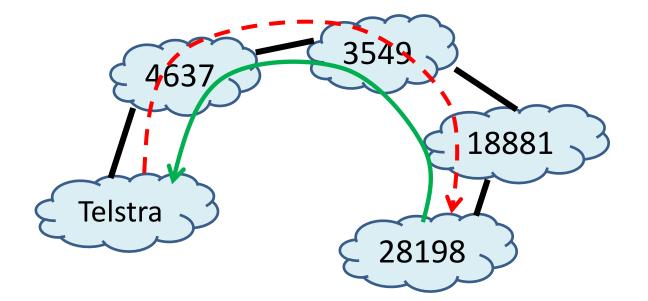
Sometimes differences


- Announced AS-PATH
- Data path (traffic)

Many legit reason(s)

AS-PATH: 177.52.48.0/21 | 1221 4637 3549 18881 28198

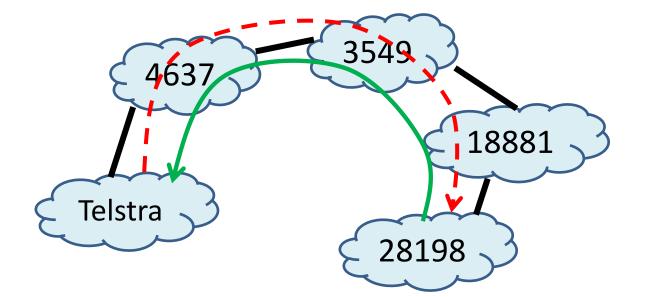
Traceroute:


- ... (initial hops)
- 9. telstraglobal.net (134.159.63.202) 164.905 ms
- 10 impsat.net.br (189.125.6.194) 337.434 ms
- 11 spo.gvt.net.br (187.115.214.217) 332.926 ms
- 12 spo.gvt.net.br (189.59.248.109) 373.021 ms
- 13 host.gvt.net.br (189.59.249.245) 343.685 ms
- 14 isimples.com.br (177.52.48.1) 341.172 ms

Sometimes differences

- Announced AS-PATH
- Data path (traffic)

Many legit reason(s)



Sometimes differences

- Announced AS-PATH
- Data path (traffic)

Many legit reason(s)

AS-PATH: 177.52.48.0/21 | 1221 4637 3549 18881 28198 AS HOPS in traceroute: 1221 1221 1221 1221 4637 4637 4637 4637 4637 4637 3549 3549 3549 18881 18881 18881 18881 28198 Traceroute-PATH: 1221 4637 3549 18881 28198

Sometimes differences

- Announced AS-PATH
- Data path (traffic)

Many legit reason(s)

AS-PATH: 177.52.48.0/21 | 1221 4637 3549 18881 28198 AS HOPS in traceroute: 1221 1221 1221 1221 4637 4637 4637 4637 4637 4637 3549 3549 3549 18881 18881 18881 28198 Traceroute-PATH: 1221 4637 3549 18881 28198