Example topic 1

3 Peer-to-peer



P2P file sharing

Notes based on notes by
K.W. Ross, J. Kurose, D.
Rubenstein, and others




P2P: centralized directory g

Original "Napster” design

centralized
directory server

v

.
““

.

1) When peer connects, it
informs central server: §
IP address
content

2) Alice queries for "Hey Jude"

3) Alice requests file from Bob



Napster

napster.com

1. File list centralized directory
and IP =
address is

uploaded -: f




Napster

napster.com

2. User centralized directory
requests
search at -
server. Query
and ’T
results




Napster

napster.com

3. User pings centralized directory
hosts that
apparently
have data.

Looks for
best transfer
rate.




Napster

napster.com
4. User chooses centralized directory

server

Napster's \
centralized Retrieves i
server farm had file

difficult time

keeping

up with traffic




P2P: problems with centralized directory

= single point of failure file transfer is
= performance bottleneck decentralized, but

TR . locating content is
= copyright infringement: . .
“target” of lawsuit is highly centralized

obvious



Unstructured P2P: Gnutella

3 Focus: decentralized method searching for files
O central directory server no longer the bottleneck
o more difficult to “pull plug" @ B

B g
3 Each application instance serves to:
O store selected files
O route queries from and to its neighboring peers
O respond to queries if file stored locally
o serve files



Gnutella: protocol

L. , File transfer:
= Query message sent over existing TCP connections TTP

= Peers forward Query message

Query
QueryHit

Scalability:
limited scope
flooding




Distributed Search/Flooding




Distributed Search/Flooding




Hierarchical Overlay

O Between centralized index,
query flooding approaches

O Each peer is either a group
leader or assigned to a
group leader

O TCP connection between peer
and its group leader

O TCP connections between

some pairs of group leaders ® ordinary peer
‘ group-leader peer
neighoring relationships
] Gr'oup Ieader' TraCks in overlay network

content in its children



Example: KaZaA Architecture

]

Al G
§ (; iy iib
S

7 Nodes that have more connection = "> 4
bandwidth and are more available are = [ 4
designated as "supernodes”

3 Each supernode acts as a mini-Napster
hub, tracking the content and IP
addresses of its descendants

O




Parallel Downloading; Recovery

O If file is found in multiple nodes, user can
select parallel downloading

3 Most likely HTTP byte-range header used
to request different portions of the file
from different nodes

7 Automatic recovery when server peer
stops sending file



Lessons learned from KaZaA

KaZaA provides powerful
file search and transfer
service without server
infrastructure

Copyright infringement

0 Exploit heterogeneity

3 Provide automatic

recovery for
interrupted downloads

3 Powerful, intuitive
user interface

7 International cat-and-
mouse game

3 With distributed,
serverless
architecture, can the

plug be pulled?
3 Prosecute users?

3 Launch DoS attack on
supernodes?

3 Pollute?



P2P Case study: Skype

Skype clients (SC)
3 Inherently P2P: pairs » B
of users communicate.  |u




Peers as relays

3 Problem when both
Alice and Bob are
behind "NATs".

O NAT prevents an outside
peer from initiating a call
to insider peer




Peers as relays

3 Problem when both
Alice and Bob are
behind "NATs".

O NAT prevents an outside
peer from initiating a call
to insider peer

3 Solution:

O Using Alice's and Bob's
SNs, Relay is chosen

O Each peer initiates
session with relay.

O Peers can now
communicate through
NATSs via relay







Structured p2p systems



Distributed Hash Table (DHT)

A DHT = distributed P2P database

. (Y Value
0 Database has (key, value) pairs; 53

O key: ss number; value: human name 01

O key: content type; value: IP address |10
11

3 Peers query DB with key
O DB returns values that match the key

O Peers can also insert (key, value) pairs



DHT Identifiers s

000002

FFFFff

0 Assign integer identifier to each peer in range [0,2"-1]
O Each identifier can be represented by n bits.

0 Require each key to be an integer in same range.

3 To get integer keys, hash original key.
O E.g., key = h("Led Zeppelin IV")
O This is why they call it a distributed “hash” table



How to assign keys to peers?

3 Central issue:
O Assigning (key, value) pairs to peers.

O Rule: Assign key to the peer that has the
closest ID.

7 Convention in lecture: closest is the closest
successor of the key.

J Ex: n=4; peers: 1,3,4,5,8,10,12,14;
O key = 13, then successor peer = 14
O key = 15, then successor peer = 1



Circular DHT (1)

15

12

10
8

3 Each peer only aware of immediate successor
and predecessor.

3 "Overlay network”



Circle DHT (2)

0001 Who's

responsible
for key 1110 ?

O(N) messages
onh avg to resolve
query, when there

are N peers
g —

0100

0101

Define closest
s closest

a 1000

successor




Circular DHT with Shortcuts

Who's
responsible
for key 1110?

15

12

10
8

O Each peer keeps track of IP addresses of
predecessor, successor, short cuts.

7 E.g., Example above reduced from 6 to 2 messages.

3 Possible to design shortcuts so O(log N) neighbors,
O(log N) messages in query



Example: Chord Routing [see paper]

J A node s's ith neighbor has the ID that is equal to s+2
or is the next largest ID (mod ID space), i20

3 To reach the node handling ID t, send the message to
neighbor #log,(1-s)

O Requirement: each node s must know about the next
node that exists clockwise on the Chord (0t neighbor)

3 Set of known neighbors called a finger table

N1

lookup(54)
<

[ks4 ]ns

N51

N51

N14

N48

N48

N21

N32 N32






DHT APT

API}

application
DHT substrate
/

|

key

each data item (e.g., file or metadata
pointing to file copies) has a key

application responsible
API node
DHT substrate
R
) ()
aalll 145!
S5
2 | 8
overlay BHE
1 g | P
nhetwork S
>
&=
. N
application

DHT substrate

API







BitTorrent-like systems

O File split into many smaller pieces
7 Pieces are downloaded from both seeds and downloaders

O Distribution paths are dynamically determined
O Based on data availability

Downloader

| Downloader Seed
Downloaderl

Seed

Torrent

(x downloaders; y seeds)

Arrivals

Departures

Downloader . _)\/

Download time
€ >

Seed residence

€ time >




File distribution: BitTorrent

O P2P file distribution

tracker: tracks peers torrent: group of

participating in torrent peers sei)(?"c‘xa?l ie”9

obtain list
of peers

chunks




Download using BitTorrent
Background: Incentive mechanism
3 Establish connections to large set of peers

O At each time, only upload to a small (changing) set of peers
7 Rate-based tit-for-tat policy

O Downloaders give upload preference to the downloaders
that provide the highest download rates

Highest download rates ——2 > Pick top four

>Pick one at random
Optimistic unchoke




Download using BitTorrent
Background: Piece selection

Peer 1 . 2 . K
s EERETE

]
Pieces in neighbor set: (1)  (2)(1) (2) (2)(3)(8)
mE- [ B - ]

3 Rarest first piece selection policy
O Achieves high piece diversity

7 Request pieces that
O the uploader has;
o the downloader is interested (wants); and
O is the rarest among this set of pieces




Tracker-less torrents

3 Combine DHTs and BT ...
/Swar'm file 2 \

/ Swarm fie M\




Tracker-less torrents

3 Combine DHTs and BT ...

Swarm file 1 Swarm file 2 Swarm file M

i

i) L

N
)€ =
%;;J" \‘T-‘J
Finge T=ts e

NS = 3 N~ T =%
NS - —= N~ 1 =%
N - <3 N~ 1 <%

NS - s ~N =
-1 NS - — ~N==
NS 3= [ e —




Tracker-less torrents

3 Combine DHTs and BT ...

Swarm file 2 Swarm file M

l!;"b

@) =




Tracker-less torrents

3 Combine DHTs and BT ...

Sw

)

arm file 1

@l

<

Swarm file 2

l!;"b

Swarm file M

@) =







Example topic 2

3 MapReduce



Motivation

3 Process lots of data
» Google processed about 24 petabytes of data per day in 2009.

0 A single machine cannot serve all the data
* You need a distributed system to store and process in parallel



MapReduce

7 MapReduce [OSDI'04] provides
O Automatic parallelization, distribution
o I/0 scheduling
* Load balancing
- Network and data transfer optimization

O Fault tolerance
* Handling of machine failures

7 Need more power: Scale out, not up!

* Large number of commodity servers as opposed to
some high-end specialized servers

Apache Haoo:

Open source implementation of MapReduce




MapReduce workflow

Input Data Output Data
write =
local g
read write
remote
read,
sort
Map Reduce
extract something aggregate,
you care about from summarize,
each record filter, or

transform



MapReduce

Hadoop
»~Program <

\

fork . fork » fork
/, ; \\\\
- . Master . N
/anf‘:'g'?/ . assign
Input Data ’ p ~reduce Output Data
‘// \\\ \\

\

\‘ ]
Transfer ] write
local g

peTa" write

scale >

dafa e
Th I"Ongh > remote
network read,

sort

Reduce



Failure in MapReduce

3 Failures are norm in commodity hardware

3 Worker failure
O Detect failure via periodic heartbeats
O Re-execute in-progress map/reduce tasks

3 Master failure
O Single point of failure; Resume from Execution Log

O Data stored on multiple nodes

7 Robust

O Google's experience: lost 1600 of 1800 machines
oncel, but finished fine



Example: Word Count

Input Files

Apple Orange Mango
Orange Grapes Plum

Apple Plum Mango
Apple Apple Plum

http://kickstarthadoop.blogspot.ca/2011/04/word-count-hadoop-map-reduce-
example.html



MapReduce: map, shuffle, reduce

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result

Bear,1 ——w Bear, 2
Deer,1 ——— m Bear, 1
Deer Bear River |———w Bear, 1

River, 1
/ Car, 1
Car,1 —m» Car,3 |—m Bear, 2

Deer Bear River Car, 1 Car, 1 Car, 3
Car Car River ——w Car CarRiver — = Car, 1 Deer, 2
Deer Car Bear River, 1 River, 2

Deer,1 —— = Deer,2 ———=

Deer, 1
Deer, 1 ;
Deer CarBear —m Car, 1
Bear, 1 River, 1 ——— = River, 2

River, 1

Map: Each worker applies the map function to local data + writes the output to a temporary
storage. Master ensures only one copy of the redundant input data is processed.

Shuffle: Workers redistribute data based on the output keys (produced by the map
function) such that all data belonging to one key is located on the same worker node

Reduce: Workers process each group of output data, per key, in parallel.



MapReduce: map, shuffle, reduce

Map Shuffle Reduce

{[]]

InkF < —Hiil
L[]
]

ink < — —
L[]
]

Ink < —fill
L[]}

Map: Each worker applies the map function to local data + writes the output to a temporary
storage. Master ensures only one copy of the redundant input data is processed.

Shuffle: Workers redistribute data based on the output keys (produced by the map
function) such that all data belonging to one key is located on the same worker node

Reduce: Workers process each group of output data, per key, in parallel.



Summary

3 MapReduce
O Programming paradigm for data-intensive computing
O Distributed & parallel execution model
O Simple to program



