
TDTS04/TDDE35: Distributed Systems

Instructor: Niklas Carlsson

Email: niklas.carlsson@liu.se

Notes derived from “Distributed Systems: 
Principles and Paradigms”, by Andrew S. 

Tanenbaum and Maarten Van Steen, Pearson Int. Ed.

The slides are adapted and modified based on slides used by other 
instructors, including slides used in previous years by Juha 
Takkinen, as well as slides used by various colleagues from the 
distributed systems and networks research community.

1

mailto:niklas.carlsson@liu.se


Communication in distributed systems

• How do distributed components talk to each other?

• “Distributed” processes located on different machines

• Need communication mechanisms

• Goal: Hide distributed nature as far as possible

2



Communication in distributed systems

• Networking primitives and protocols (e.g., TCP/IP)

• Advanced communication models: Built on 
networking primitives

• Messages

• Streams

• Remote Procedure Calls (RPC)

• Remote Method Invocation (RMI)

3



Important

The transport layer provides the actual communication facilities for most 

distributed systems.

Standard Internet protocols

•TCP: connection-oriented, reliable, stream-oriented communication

•UDP: unreliable (best-effort) datagram communication

Transport Layer



Example paradigms

6

Publish subscribe
- Many to many

e.g., RSS and messaging



Distinguish...

• Transient versus persistent communication

• Asynchronous versus synchronous communication

Types of communication



Transient versus persistent

• Transient communication: Comm. server discards message when it 

cannot be delivered at the next server, or at the receiver.

• Persistent communication: A message is stored at a communication 

server as long as it takes to deliver it.

Types of communication



Places for synchronization

• At request submission

• At request delivery

• After request processing

Types of communication



Some observations

Client/Server computing is generally based on a model of transient synchronous 

communication:

•Client and server have to be active at the time of communication

•Client issues request and blocks until it receives reply

•Server essentially waits only for incoming requests, and subsequently processes 

them

Drawbacks synchronous communication

•Client cannot do any other work while waiting for reply

•Failures have to be handled immediately: the client is waiting

•The model may simply not be appropriate (mail, news)

Client/Server



17



Message-oriented Transient 
Communication

Many distributed systems built on top of simple message-oriented model

– Example: Berkeley sockets



Stream examples

Single sender and receiver

One sender

Multiple receivers

Single sender and receiver

One sender
Multiple receivers

19



20



Remote procedure calls (RPC)

• Goal: Make distributed computation look like 
centralized computation

• Idea: Allow processes to call procedures on 
other machines

• Make it appear like normal procedure calls

21



Parameter Passing

Local procedure parameter passing

– Call-by-value

– Call-by-reference: arrays, complex data structures

Remote procedure calls simulate this through:

– Stubs – proxies

– Flattening – marshalling

Related issue: global variables are not allowed in 
RPCs

22



RPC operation

• Challenges:

• Hide details of communication

• Pass parameters transparently

• Stubs

• Hide communication details

• Client and server stubs

• Marshalling

• Flattening and parameter passing

23



RPC operation

24

Client code Server code

Client stub Server stub

RPC client RPC server



Stubs

• Code that communicates with the remote side

• Client stub:

• Converts function call to remote communication

• Passes parameters to server machine

• Receives results

• Server stub:

• Receives parameters and request from client

• Calls the desired server function

• Returns results to client
25



Passing value parameters

Figure 4-7. The steps involved in a doing a 
remote computation through RPC.



Stub generation

• Most stubs are similar in functionality
• Handle communication and marshalling

• Differences are in the main server-client code

• Application needs to know only stub interface

• Interface Definition Language (IDL)
• Allows interface specification

• IDL compiler generates the stubs automatically

29



Writing a Client 
and a Server

Figure 4-12. The steps in writing a client and 
a server in DCE RPC.



31



Asynchronous RPC

• Basic RPC
• Client blocks until results come back

• What if client wants to do something else?

• What if things fail?

32



Asynchronous RPC

• Basic RPC
• Client blocks until results come back

• Asynchronous RPC
• Server sends ACK as soon as request is received

• Executes procedure later

• Deferred synchronous RPC
• Use two asynchronous RPCs

• Server sends reply via second asynchronous RPC

• One-way RPC
• Client does not even wait for an ACK from the server

33



Tanenbaum & Van 
Steen, Distributed 

Client and Server Stubs

Figure 4-6. Principle of RPC between a client and 
server program.



Asynchronous RPC (2)

Figure 4-10. (b) The interaction using asynchronous 
RPC.



Asynchronous RPC (3)

Figure 4-11. A client and server interacting through 
two asynchronous RPCs.



37



RPC: Network failure

• Client unable to locate server:

• Return error or raise exception

• Lost requests/replies:

• Timeout mechanisms

• Make operation idempotent (does not 
change the results beyond initial operation)

• Use sequence numbers, mark 
retransmissions

38



RPC: Server failure

• Server may crash during RPC

• Did failure occur before or after 
operation?

• Operation semantics

• Exactly once: desirable but impossible 
to achieve

• At least once

• At most once

• No guarantee

39



RPC: Client failure

• Client crashes while server is computing

• Server computation becomes orphan

• Possible actions

• Extermination: log at client stub and 
explicitly kill orphans

• Reincarnation: Divide time into epochs 
between failures and delete 
computations from old epochs

• Expiration: give each RPC a fixed 
quantum T; explicitly request extensions

40



41



Remote method invocation (RMI)

• RPCs applied to distributed objects

• Class: object-oriented abstraction

• Object: instance of class

• Encapsulates data

• Export methods: operations on data

• Separation between interface and 
implementation

42



Proxies and skeletons

• Proxy: client stub
• Maintains server ID, endpoint, object ID

• Does parameter marshalling

• In practice, can be downloaded/constructed on the fly

• Skeleton: server stub
• Does demarshalling and passes parameters to server

• Sends result to proxy

45



Binding a client to an object

• Loading a proxy in client address space

• Implicit binding:

• Bound automatically on object 
reference resolution

• Explicit binding:

• Client has to first bind object

• Call method after binding

46



Parameter passing
• Less restrictive than RPCs

• Supports system-wide object references

• Pass local objects by value, remote objects by reference

47



Naming: CORBA Object References

The organization of an IOR ...



Object-based messaging

CORBA’s callback model for 
asynchronous method invocation.

CORBA’s polling model for 

asynchronous method invocation.



50


