TDTS04/TDDES35: Distributed Systems

Instructor: Niklas Carlsson
Email:

Notes derived from “Distributed Systems:

Principles and Paradigms™, by Andrew S.
Tanenbaum and Maarten VVan Steen, Pearson Int. Ed.

The slides are adapted and modified based on slides used by other
instructors, including slides used in previous years by Juha
Takkinen, as well as slides used by various colleagues from the
distributed systems and networks research community.

mailto:niklas.carlsson@liu.se

Communication In distributed systems

* How do distributed components talk to each other?

* “Distributed” processes located on different machines
« Need communication mechanisms

« Goal: Hide distributed nature as far as possible

Communication in distributed systems

» Networking primitives and protocols (e.g., TCP/IP)

« Advanced communication models: Built on
networking primitives

* Messages

e Streams

» Remote Procedure Calls (RPC)

» Remote Method Invocation (RMI)

Transport Layer

Important
The transport layer provides the actual communication facilities for most
distributed systems.

Standard Internet protocols

*TCP: connection-oriented, reliable, stream-oriented communication
*UDP: unreliable (best-effort) datagram communication

Example paradigms

. i e.g. downloading file
U nlcaSt from webserver
- One to one

. BroadcaSt e.g. radio transmission
- One to many (everyone)

- Multicast e.g. streaming video, IRC
- One to many (groups)

. AnycaSt e.g. server selection

- One to one of many

Publish subscribe 9. RSSandmessaging
- Many to many

N/
[QD%]

E% b

Types of communication

Distinguish...

Synchronize at Synchronize at Synchronize after
request submission request delivery processing by server

Client — L

F{equest\/ /

Transmission
interrupt

Storage
facility

Server Time —>

 Transient versus persistent communication
« Asynchronous versus synchronous communication

Types of communication

Transient versus persistent

Synchronize at Synchronize at Synchronize after
request submission request delivery processing by server

Client — L

F{equest\/ /

Transmission
interrupt

Storage
facility

Server Time —>

« Transient communication: Comm. server discards message when it
cannot be delivered at the next server, or at the receiver.

» Persistent communication: A message is stored at a communication
server as long as it takes to deliver it.

Types of communication

Places for synchronization

Synchronize at Synchronize at Synchronize after
request submission request delivery processing by server

Client I/ I/ |/
Request\/ /

Transmission
interrupt

Storage
facility

Server Time —>

» At request submission
« Atrequest delivery
« After request processing

Client/Server

Some observations
Client/Server computing is generally based on a model of transient synchronous
communication:

*Client and server have to be active at the time of communication

*Client issues request and blocks until it receives reply
*Server essentially waits only for incoming requests, and subsequently processes

them

Drawbacks synchronous communication

+Client cannot do any other work while waiting for reply
*Failures have to be handled immediately: the client is waiting
*The model may simply not be appropriate (mail, news)

17

Message-oriented Transient
Communication

Many distributed systems built on top of simple message-oriented model
— Example: Berkeley sockets

Server T
socket - bind |- listen ac:(iept —}jre—aimf)_;@
Synchronization point —¥ ! Communication .
\ : \|
socket Wconnect- ™ write ———» read |- close

Client k—/_//)

Stream examples

Camera
— Display
I oS Stream os
Network Single sender and receiver
(b)
Stream > Sink
A
_>[Intermediate
node, possibly
Source \) with filters One sender
> Multiple receivers

Lower bandwﬁ\[

19

20

Remote procedure calls (RPC)

» Goal: Make distributed computation look like
centralized computation

- Idea: Allow processes to call procedures on
other machines

» Make it appear like normal procedure calls

a) Parameter passing in a local b) The stack while the called procedure is
procedure call: the stack before the active
call to read

Stack pointer

Main program's Main program's
ocal variables local variables
<~

O

bytes

buf

fd

return address
read's local
variables

21
(@) (b)

Parameter Passing

Local procedure parameter passing

— Call-by-value

— Call-by-reference: arrays, complex data structures
Remote procedure calls simulate this through:

— Stubs — proxies
— Flattening — marshalling

Related issue: global variables are not allowed In
RPCs

22

RPC operation

 Challenges:
 Hide details of communication
» Pass parameters transparently
 Stubs
« Hide communication details
 Client and server stubs
» Marshalling
» Flattening and parameter passing

23

RPC client

Client code

v t

Client stub

A

RPC operation

RPC server

Server code

v 1

Server stub

A

Wait for result

Client

7

Call remote
procedure

Call local procedure
and return results

RPC client RPC server

f ; t u b S Client code Server code

v 1 v i

Client stub Server stub

« Code that communicates with the remote side

 Client stub:
« Converts function call to remote communication
 Passes parameters to server machine
« Recelves results

* Server stub:
* Receives parameters and request from client
 Calls the desired server function
 Returns results to client

25

Client machine

Passing value parameters

Server machine

Client process . Server process
1. Client call to Implementation
d
procedure of add
_ Server stub : e
—Lk=addl) | Gjent stub) [k=addi) |
proc: "add" 5y proc: "add"
int: val(i) 2 Stub builds int: val(i)
int: val(j) message int: val(j)
A
proc: "add"
Client OS int: val()) Server OS
L int: val(j))

6. Stub makes
local call to "add"

5. Stub unpacks
message

4. Server OS
hands message
to server stub

3. Message is sent
across the network

Figure 4-7. The steps involved In a doing a
remote computation through RPC.

Stub generation

» Most stubs are similar in functionality
« Handle communication and marshalling
 Differences are in the main server-client code

 Application needs to know only stub interface

* Interface Definition Language (IDL)
 Allows interface specification
 |IDL compiler generates the stubs automatically

29

RPC client RPC server

- - - Client code Server code
Wr I t I n g a C I I e nt LCliem stuI) St:rver stuI)
T |
Interface]
an a e rve r definition file
IDL compiler
Client code Client stub Header Server stub Server code
#mclude #include
C compiler compiler C compiler [C compiler
Y Y Y
Client Cllent stub Server stub Server
object file object file object file object file
LirI(er Runtime F%un’hA Lir:«ar
library library
Y \ 4
Client Server
binary binary

Figure 4-12. The steps in writing a client and
a server in DCE RPC.

31

Asynchronous RPC

 Basic RPC

e Client blocks until results come back

* What if client wants to do something else?
« What if things fail?

32

Asynchronous RPC

Basic RPC

e Client blocks until results come back

Asynchronous RPC
 Server sends ACK as soon as request iIs received
 Executes procedure later

Deferred synchronous RPC
 Use two asynchronous RPCs
 Server sends reply via second asynchronous RPC

One-way RPC

e Client does not even walit for an ACK from the server

33

Chlient and Server Stubs

Wait for result

Client s———ee—e————
/ Y
Call remote Return
procedure from call
Request Reply

Call local procedure Time ——>»
and return results

Figure 4-6. Principle of RPC between a client and
server program.

Asynchronous RPC (2)

Client Wait for acceptance

/\ 4 5

Call remote Return
procedure from call
Request Accept request
Server Call local procedure Time —»

(b)

Figure 4-10. (b) The Interaction using asynchronous
RPC.

Asynchronous RPC (3)

Wait for Interrupt client
acceptance
Client """Fz——— —\--_
/ X
Call remote 1I[:%eturn -
rocedure rom call eturn
P results Acknowledge
Accept
Request request
Server s-r=rEssssmm———- s
Call local procedure \ Time —»
Call client with
one-way RPC

Figure 4-11. A client and server interacting through
two asynchronous RPCs.

37

RPC: Network fatlure

 Client unable to locate server:
 Return error or raise exception
» Lost requests/replies:
* Timeout mechanisms

» Make operation idempotent (does not
change the results beyond initial operation)

- Use sequence numbers, mark
retransmissions

38

RPC: Server failure

 Server may crash during RPC
 Did failure occur before or after
operation?
« Operation semantics

 Exactly once: desirable but impossible
to achieve

e At least once
At most once
* No guarantee

39

RPC: Chient failure

» Client crashes while server Is computing
* Server computation becomes orphan
 Possible actions
 Extermination: log at client stub and
explicitly kill orphans

 Reincarnation: Divide time into epochs
between failures and delete
computations from old epochs

 EXxpiration: give each RPC a fixed
guantum T, explicitly request extensions

40

41

Remote method invocation (RMI)

» RPCs applied to distributed objects
 Class: object-oriented abstraction
 Object: instance of class
 Encapsulates data
« Export methods: operations on data

 Separation between interface and
Implementation

42

Proxies and skeletons

* Proxy: client stub
« Maintains server 1D, endpoint, object ID
» Does parameter marshalling
 |n practice, can be downloaded/constructed on the fly

« Skeleton: server stub

« Does demarshalling and passes parameters to server
 Sends result to proxy

Cl Serv
} State
Same
Client interfe_lce D D D Method
invokes L1 a5 RIEcH
method
Y ~~—
Skeleton | | Interface
T invoke: Skeleton
y same method
at object A
Client OS Server OS
[\ /|

45

Binding a client to an object

 Loading a proxy In client address space

 Implicit binding:

» Bound automatically on object

reference resolution

 Explicit binding:

« Client has to first bind object

Client

||||||||||||

iiiiiii
aaaaaaa

eeeeee

achine

NNNNNNN

Marshalled invocation

Client || | |Server
] I State
Same
interface IO = et
| as objec
e || B o] ||
||||||| —T1
Py | | | samemethod Skeleton
at obj A
cietos | | | | sereros

46

Parameter passing

* Less restrictive than RPCs
 Supports system-wide object references
 Pass local objects by value, remote objects by reference

Machine A Machine B
Local object .
Local 01 J } Remote object
reference L1 Remote 02
A reference R1 >
© . X N
/ \ i S i e
Client code with |
RMI to server at C !
(proxy) New local |
reference [Copy of O1 J /
N y
Remote 4 i \
invocation with ﬁ ° ol T
L1and R1 as o Copy of R1to O2
parameters

Server code
(method implementation)

a7

Machine C

Naming: CORBA Object References

Tagged Profile

Interoperable Object Reference (IOR)

Repository
identifier

Profile

P Host Port | Object key | Components
version
Adapter Object Other server-
identifier | identifier |specific information

The organization of an IOR ...

Object-based messaging

CORBA'’s callback model for

Client application asynchronous method invocation.

1. Call by the ﬂ
application

Client ! Callback | 4. Call by the RTS
proxy interface
i + 3. Response from server
Client | '
RTS _ 77 <«

e DN

2. Request to server

CORBA'’s polling model for

Client application) .
asynchronous method invocation.

1. Call by the ﬂ ﬁ 4. Call by the
application application

Client i Polling
proxy i interface
! A 3. Response from server

mTs L el
7—>

2. Request to server

50

