Parallel Computer
Architecture Concepts

TDDE35 Lecture 1

Christoph Kessler

PELAB / IDA
Linkoping University
Sweden

LINKOPING
II.“ UNIVERSITY

LINKOPING
II.“ UNIVERSITY

Outline

Lecture 1: Parallel Computer Architecture Concepts
= Parallel computer, multiprocessor, multicomputer
= SIMD vs. MIMD execution
= Shared memory vs. Distributed memory architecture
= Interconnection networks
= Parallel architecture design concepts
= Instruction-level parallelism
= Hardware multithreading
= Multi-core and many-core
= Accelerators and heterogeneous systems
= Clusters
= |mplications for programming and algorithm design

2

LINKOPING

Traditional Use of Parallel Computing: ™
Large-Scale HPC Applications

= High Performance Computing (HPC)

- E.g. climate simulations, particle physics, proteine docking, ...

= Much computational work
(in FLOPs, floatingpoint operations)

= Often, large data sets

= Single-CPU computers and even today’s
multicore processors cannot provide such
massive computation power

= Aggregate LOTS of computers - Clusters “‘;-.
= Need scalable parallel algorithms
- Need exploit multiple levels of parallelism S

= Cost of communication, memory access
3

High Performance Computing
Application Areas (Selection)

= Computational Fluid Dynamics

= Weather Forecasting and Climate Simulation

= Aerodynamics / Air Flow Simulations and Optimization
= Structural Engineering

= Fuel-Efficient Aircraft Design

= Molecular Modelling

= Material Science

= Computational Chemistry

= Battery Simulation and Optimization
= Galaxy Simulations

= Earthquake Engineering, Oil Reservoir Simulation &0
= Flood Prediction 9\6\ :_x\o

= Blood Flow Simulation
= fRMI Image Analysis

"~ www.e-science.se

vz
Example: Weather Forecast (e simpified...)

* Air pressure

* Temperature

* Humidity

» Sun radiation
* Wind direction
* Wind velocity

« 3D Space discretization (cells)

 Time discretization (steps)

« Start from current observations
(sent from weather stations etc.)

» Simulation step by evaluating
weather model equations

cell

E.g., cell size 1km3 and .x
10min time discretization

- 10-day simulation: 10" FLOPs
SMHI: 4 forecasts per day,

50 variants (simulations) per forecas)t

|
I .h"llllll

! III\l"liuullll‘l

\

!\T i

https://www.smhi.se/kunskapsbanken/meteorologi/sa-gor—smhi—en—vaderprognos—1 4662

LINKOPING

Another Classical Use of Parallel Computifig®
Parallel Embedded Computing

= High-performance embedded computing
= E.g. on-board realtime image/video processing, gaming, ...

= Much computational work
(often fixed point operations)

= Often, in energy-constrained mobile devices

= Sequential programs on single-core computers
cannot provide sufficient computation power
at a reasonable power budget

= Use many small cores at low frequency
« Need scalable parallel algorithms
= Cost of communication, memory access

- Energy cost (Power x Time)
6

LINKOPING
II.“ UNIVERSITY

More Recent Use of Parallel Computing:
Big-Data Analytics Applications

= Big Data Analytics
= Data access intensive (disk I/O, memory accesses)
= Typically, very large datasets (GB ... TB ... PB ... EB ...)
= Also some computational work for combining/aggregating data

= E.g. data center applications, business analytics, click stream
analysis, scientific data analysis, machine learning, ...

= Soft real-time requirements on interactive querys

= Single-CPU and multicore processors cannot
provide such massive computation power
and I/O bandwidth+capacity

= Aggregate LOTS of computers - Clusters
= Need scalable parallel algorithms
= Need to exploit multiple levels of parallelis *':i""'.—‘
= Fault tolerance

7

Il LINKOPING
o UNIVERSITY

HPC vs Big-Data Computing

= Both need parallel computing

= Same kind of hardware — Clusters of (multicore) servers
= Same OS family (Linux)

= Different programming models, languages, and tools

HPC application Big-Data application

HPC prog. languages:
Fortran, C/C++ (Python)

Scientific computing
libraries: BLAS, ...

OS: Linux
HW: Cluster

- Let us start with the common basis: Parallel computer architecture
8

v
Parallel Computer
A parallel computer is a computer consisting of

+ two or more processors
that can cooperate and communicate
to solve a large problem faster,

+ one or more memory modules,

+ an interconnection network
that connects processors with each other
and/or with the memory modules.

Multiprocessor: tightly connected processors, e.g. shared memory

Multicomputer: more loosely connected, e.g. distributed memory

9

LINKOPING
II.“ UNIVERSITY

Parallel Computer Architecture Concepts

Classification of parallel computer architectures:
= by control structure

= by memory organization

= in particular, Distributed memory vs. Shared memory
= Dby interconnection network topology

10

II LINKOPING
o UNIVERSITY

Classification by Control Structure [Flynn'72]

SISD single instruction stream, single data stream
+ sequential. OK where performance is not an issue. °P

SIMD single instruction stream, multiple data streams
Common clock, common program memaory, common program counter.

+ VLIW processors TTTT..
+ traditional vector processors Yoo _A\ U7

+ traditional array computers
+ SIMD instructions on wide data words (e.g. Altivec, SSEi*LL LL

MIMD multiple instruction streams, multiple data streams

Each processor has its own program counter.
Hybrid forms op\ [ops\ [opA [op;

11

Classification by Memory Organization

Interconnection Network

I
A
i | k3

el

B

L

M Y6

My

Distributed memory system (DMS)
e.g. (traditional) HPC cluster

P

Network e.g. bus

Pp

M

II LINKOPING
® UNIVERSITY

Shared memory system (SMS)
e.g. multiprocessor (SMP) or computer
with a standard multicore CPU

Most common today in HPC and Data centers:

Hybrid memory system

» Cluster (distributed memory)
of hundreds, thousands of
shared-memory servers N
each containing one or several multi-core CPUs i

v
Hybrid (Distributed + Shared) Memory

] g 3
=l
i ‘
it
« [t i

System *"'
W\

Nodes m
/1NN

Processor chips 20 .

——

Cores ® - 0

13

LINKOPING
II.“ UNIVERSITY

Interconnection Networks (1)

= Network

= physical interconnection medium (wires, switches)
+ communication protocol

(a) connecting cluster nodes with each other (DMS)
(b) connecting processors with memory modules (SMS)

Classification P

= Direct / static interconnection networks
= connecting nodes directly to each other

= Hardware routers (communication coprocessors)
can be used to offload processors from
most communication work

= Switched / dynamic interconnection networks
= Graphs of routers (switches) c&nnecting the nodes

Il LINKOPING
o UNIVERSITY

Interconnection Networks (2):
Simple Topologies

fully connected

bus @ @ @ @ 1 wire - bus saturation with many processors
e.g. Ethernet

linear array [P}—{P}{P}{P] ring ...-. e.g. Token Ring

o %E%E%

3D grid

root processor
is bottleneck

15

Interconnection Networks (3): [ree vy,
Fat-Tree Network

= Tree network extended for higher bandwidth (more switches,
more links) closer to the root

= Higher cost, but reduces bandwidth bottleneck

Root of logical tree
/
/

i <L X> «L
V’;;’!':«r‘\ ~
/ﬂ‘&

Example implementation (SGI):
Logically a 4-ary tree,
physically a butterfly-like network

= Example: Infiniband network (Mellanox/Nvidia),
Omnipath network (Intel) [&

LINKOPING
II.“ UNIVERSITY

More about Interconnection Networks

= Hypercube, Crossbar, Butterfly, Hybrid networks... = TDDEGS

= Switching and routing algorithms

= Discussion of interconnection network properties

Cost (#switches, #links)

Scalability
(asymptotically, cost grows not much faster than #nodes)

Node degree

Longest path (= latency)

Accumulated bandwidth

Fault tolerance (worst-case impact of node or switch failure)

17

Instruction Level Parallelism (1): Ll
Pipelined Execution in the ALU

Principle: SIMD + pipelining
cf. assembly line manufacturing of cars etc.

+ ldea: partition “deep” arithmetic circuits (e.g., floatingpoint-adder)
into ¢ > 1 horizontal layers, called stages, of about equal depth.
Reduce clock cycle time such that each stage needs one cycle.

+ Intermediate results of stage k are forwarded to stage £+ 1
+ The operands and result(s) are vectors, sequences (arrays) of floats

+ All stages work simultaneously, but on different components of the vectors

+ Stage k works on [-th vector
component in cycle k+1

+ First result available after d cycles, HﬁL
a startup phase of 4 — 1 cycles ‘
is needed to fill the pipeline

Used in early supercomputers:

SIMD ComPUting vector supercomputers by
with Pipelined Vector Units Y (1970s, 1989%), Fuiitsu, ..

Today, automatically pipelined
execution also of different
instructions is standard in CPUs

e A vector operation, e.g. C[1 : N] +— A[1 : N|+ B|[1 : N] (elementwise addition)
takes N+d —1cycles (compared to N x d cycles without pipelining)

e Condition: All component computations of a vector operation
must be of same operation type and independent of each other

e Scalar operations take d cycles — no improvement.

e Programs must be vectorized (by the programmer or compiler)

+ Stage k& works on [-th vector
component in cycle k+ 1/

+ First result available after d cycles, A% 1T 3
a startup phase of d — 1 cycles f; s 5T ew| ww
is needed to fill the pipeline Vo Yo Yy wwe v W

LINKOPING

Instruction-Level Parallelism (2): Iusiz:

VLIW and Superscalar T T
\atp / \ =ur/ \ v / \ sisf
Multiple functional units in parallel A A A A
Try to run more than 1 instruction percc =\ fr—t———tr———
2 main paradigms:
= VLIW (very large instruction word) architecture #
= Parallelism is explicit, programmer-/compiler-managed (hard)
- Energy-efficient —

= Popular in digital signal processors \

Y placel A place? DISPATCHER

= Superscalar architecture - - I, [l

N—— ~—— buffer (2 instructions)

= Sequential instruction stream
- Hardware-managed dispatch
= power + area overhead
ILP in applications is usually limited (= the "ILP wall”)
= typ. < 3...4 instructions can be issued simultaneously
= Due to control and data dependences in applications
- Larger issue widths give at best marginal gains
Solution: Multithread the application and the processor

LINKOPING
II.“ UNIVERSITY

Hardware Multithreading

REGISTER FILE REGISTER FILE

O G e o g s R s s s e o s o s e

Superscalar Coarse Fine Simultaneous
multithreading multithreading multithreading

“functional units ~

time

1 thread 2 threads 4 threads 4 threads

: $5 5535 s5is

P

Background:

II LINKOPING
® UNIVERSITY

Hardware multithreading vs. multicore

= Multicore = multiple separate processors placed on a single chip,

operating truly in parallel
sharing last-level cache and off-chip memory access interface (the “un-core”).

= Hardware multithreading
= asingle processor (e.g., a core) automatically emulates multiple virtual processors
(the hardware threads) by timesharing its data path (e.g., functional units)

Hardware threads are managed entirely by the processor’s hardware

(not by the OS — the OS has no influence on it).

Each piece of hardware (e.g., the floatingpoint unit of the processor) can only be
used by one of the hardware threads at a time.

Hardware threads co-exist only by their different register sets.

The hardware switches context by switching from one register set to the next one.
Coarse-grain HW multithreading: processor hardware context-switches on cache
misses or other long-latency operations to the next hardware thread

Fine-grain HW multithreading: processor hardware context-switches after every
clock-cycle (round-robbin hardware scheduling)

Simultaneous multithreading / hyperthreading: the HW scheduler can start
execution of multiple instructions (on disjoint sub-datapaths) coming from
different HW threads (thus, independent) in the same clock cycle.

LINKOPING
II.“ UNIVERSITY

Background:
Hardware multithreading vs. multicore

(cont.)

= Hardware multithreading only gives additional speedup if long-latency
instructions (e.g. cache-missing loads) of different threads can overlap
in time with instructions from other hardware threads, by continuing
running in the (hardware) background after a hardware context switch.
This is used excessively in today’s GPUs, to hide the high memory latency.

= |n both cases (multicore, hardware multithreading)
the OS sees multiple processors sharing memory.

= Of course, both concepts can be combined: Today's CPUs have
multiple cores, each of which is hardware-multithreaded.

= Caution: Hardware multithreading has nothing to do with
software threads (created/managed by OS) or the OS CPU scheduler!
Software threads and hardware threads are orthogonal concepts —
each hardware thread can be time-shared among multiple

software threads by the OS’s software context switch and scheduler.
23

SIMD Instructions v,
in modern CPUs "vector register”

« Recall: W
SIMD = “Single Instruction stream,
Multiple Data streams” op -3\ SIMD unit /
= single thread of control flow Z 4 U\
= restricted form of data parallelism

= apply the same primitive operation (a single instruction)
in parallel to multiple data elements stored contiguously

= Arithmetic-logical units of CPUs: the datapath width is at least the
width of widest built-in data type (e.g. long double, 128bit)

= SIMD-enabled arithmetic-logical units exploit full datapath width
= use long “vector registers” |
= each holding multiple data elements of shorter data types

= Common today: 256, 512 bit SIMD extensions of the instruction set
= MMX, SSE, SSE2, SSE3, Altivec, VMX, Neon, ...

Performance boost for operations on shorter data types

Area- and energy-efficient

Code to be rewritten (“vectorized™”) by programmer or compiler

Does not help with the main memory access bandwidth bottleneck

24

LINKOPING
II.“ UNIVERSITY

The Memory Wall

Performance gap CPU - Memory

Memory hierarchy
Increasing cache sizes shows diminishing returns

= Costs power and chip area
= GPUs spend the area instead on many simple cores with little memory

= Relies on good data locality in the application
What if there is no / little data locality?

= Irregular applications,
e.g. sorting, searching, optimization...

Solution: Spread out/ overlap memory access delay

= Programmer/Compiler: Prefetching, on-chip pipelining,
SW-managed on-chip buffers

= Generally: Hardware multithreading, again!

25

MOOI’Q,S LaW Gordon Moore '
(1929-2023),

co-founder of

= Prediction (1965/1975): Intel
The number of transistors
per mm? chip area
doubles approximately
every 2 years

[at about equal production cost] i |
Microprocessor Transistor Counts 1971-2011 & Moore's Law
= Exponential increase due to e
miniaturization in semiconductors:ses e
,000,000,000 — . P%\;Vi‘:::‘ c 7':;2{:%? anium Tukwila
HTH naniom 20/ 8E&IF 20
- A self-fulfilling prophecy
through 50 yearS! curve shows transistor Pe'“iu";;mlg':' N -
E 10,000,000+ gourt doubing every o wPentm i
- Some slowdown since 2014: 5
still exponential growth of transistorz
density (albeit at lower pace) T I
- Soon running into physical and ool B o
economical limits
Gordon Moore (April 19, 1965). "Cramming More Components 1971 1980 1990 2000 2011

onto Integrated Circuits". Electronics Magazine. 38 (8): 114—-117.

Date of introduction

CPU Performance Development since 1970

50 Years of Microprocessor Trend Data Moore’s
. : ! . T Law
07 | Transition to MulticoreCPUs, ad a7
Clock frequency flattening out; | o # &% Transistors
106 | Single-thread performance | Sad o (thousanas)
- flattening out; ARV W . Sinale-Thread
| - T VYOV ingle-Threa
10 2005 e =™ *° ***1Performance .
ot b ‘,003} . | (SpecINT x 10%)
1 ' | - Frequency (MHz
ol Hatfpm, et g gl Frequency (MHz)
" N b Typical Power
10°F R L Jyv;;&Vv"“," o2, o3| (Watts)
1 “ - . Number of
10 B I I U\ D o **| Logical Cores
of 4 = o ¥ ¥ § . z
10 —‘Q ——————————— LR S ‘wommmoo rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr -
| | | | |
1970 1980 1990 2000 2010 2020

Year
Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2021 by K. Rupp Adapted for trend in number of cores.

The Power Issue

LINKOPING
II.“ UNIVERSITY

= Power = Static (leakage) power + Dynamic (switching) power

= Dynamic power ~ Voltage? * Clock frequency
where Clock frequency approx. ~ voltage

- Dynamic power ~ Frequency?

= Total power ~ #processors

Processor #cores| Volt- Fre- | Perfor- | Power | Power efficien-
architecture age | quency | mance cy [Gflops/W]
Classical superscalar 1X 1X 1x X 1X 1X
"Faster” superscalar 1x| 1.5X 1.5% 1.5x| 3.3x 0.45x
Multi-core 2x10.75%| 0.75% 1.5x| 0.8x 1.88x

Source: J. Dongarma, 2000

— Preferable to use multiple slower processors than one superfast processor

... PROVIDED THAT the application can be parallelized efficiently!

28

LINKOPING
II.“ UNIVERSITY

Moore’s Law vs. Clock Frequency

 #Transistors / mm? still
growing exponentially

according to Moore’s Law
(but with slightly lower slope

since ~2014)

Clock 4 Transistor
frequency| density

~3GHz Clock speed hitting thermal
limits of air-cooled CMOS
~2003,
; MULTI-CORE ERA due to end of Dennard Scaling
1975/ 2003 2014

Dennard scaling: With increasing End of
transistor density, can still increase| Dennard
the clock frequency and yet keep Scaling
power density at about same level

More transistors + Limited frequency
— More cores
29

Solution for CPU Design: KT R
Multicore + Multithreading

= Single-thread performance does not improve any more
since ca. 2003

= |LP wall
« Memory wall
- Power wall (end of “Dennard Scaling”)

= but thanks to Moore’s Law continuing,
we could still put more cores on a chip

= And hardware-multithread the cores
to hide (some) memory latency

= All major chip manufacturers produce multicore CPUs today

30

LINKOPING
II.“ UNIVERSITY

Main features of a multicore system

A parallel computer
There are multiple computational cores on the same CPU chip.

= Homogeneous multicore (same core type)
= Heterogeneous multicore (different core types)

The cores might have (small) private on-chip memory modules
and/or access to on-chip memory shared by several cores.

The cores have access to a common off-chip main memory

There is a way by which these cores communicate with each
other and/or with the environment.

31

LINKOPING
II.“ UNIVERSITY

Standard CPU Multicore Designs

= Standard desktop/server CPUs have a few ... up to ~32 cores

with shared Off-Chi_D main memory core | | core | | core | | core

= On-chip cache (typ., 3 levels) L1$ J L L1$ | [LIS | | L1S
L2$ L2$

L3/
« |L2-cache often shared by Interconnect / Memory interface

groups of cores, L3 often by all

= L1-cache mostly core-private

main memory (DRAM)
= Memory access interface shared by all or groups of cores

= Caching > multiple copies of the same data item
= Writing to one copy (only) causes inconsistency

= Shared memory coherence mechanism to enforce automatic
updating or invalidation of all copies around

- More about shared-memory architecture, caches, data locality,
consistency issues and coherence protocols in TDDEG65/TDDD56

LINKOPING
II.“ UNIVERSITY

Scaling Up: Network-On-Chip

= Cache-coherent shared memory (hardware-controlled) —
does not scale well to many cores

= power- and area-hungry
= signal latency across whole chip
= not well predictable access times

= NCC-NUMA — non-cache-coherent, non-uniform memory access
= Physically distributed on-chip [cache] memory,
= on-chip network, connecting PEs or coherent "tiles” of few PEs
= global shared address space,

= but software is responsible

for maintaining coherence ¥ 1 $ 1 4

= Examples: P Al (| f|pa]| (|2 f|ae|] | [[a2]] |2 |[a2
- STI Cell/B.E., . K & & =
| ==t ® 3 & »
= Tilera TILEG4, Pl U2 ozl (012 (azll (2 (azll T2 (Lag
= Intel SCC, Kalray MPPA R R R R R

II LINKOPING
o UNIVERSITY

Towards Many-Core CPUs...

= For low-power, throughput-oriented computing

= Many (today: >100) but small (energy-efficient) CPU cores on
the chip

= No longer fully cache coherent
over the entire chip

- MPI-like message passing
over 2D mesh network on chip

38

Towards Many-Core Architectures

= Tilera TILE64 (2007): 64 cores, 8x8 2D-mesh on-chip network

Mem-controllell

/O

+++++++
-

+4+++++

ot o

444444+
e e -

4444

(Image simplified)

39

1 tile: VLIW-processor
+ cache + router

LINKOPING
Il." UNIVERSITY

Clustered Many-core CPU:
Kalray MPPA-256

16 tiles

plus 1 control core per tile

Message passing network on chip:
Virtually unlimited array extension 1 &

by clustering several chips
First version ca. 2012
28 nm CMOS technology

Low power dissipation, typ. 5 W

40

g

Image source:
Kalray

LINKOPING
Il.“ UNIVERSITY

”General-purpose” GPUs

* Optimized for high throughput rather
than single-thread execution time

 Example:
High-end NVIDIA GPUs (e.g. A100)
have ~5000 CUDA cores

« Each CUDA core has a

Floating point / integer unit

ot W2 SR

T

Source: Nldl_a_

* Logic unit Nvidia Tesla C1060:
. 933 Gflops (~2009)

 Move, compare unit

* Branch unit

and is highly hardware-multithreaded
to hide the high memory access latency

« Cores managed by thread manager

« Hardware scheduler, can manage 100,000+ threads in flight
* Zero overhead thread switching

LINKOPING
II." UNIVERSITY

Nvidia Fermi (2010): 512 cores

1 "shared-memory l-cache
1 Fermi C2050 GPU ~ Multiprocessor” (SM Scheduler
Dispatch
Register file

32 Streaming
processors
(cores)

Load/Store units

1 Streaming Special function units
Processor
(SP) 64K configurable L1cache/

shared memory

43

II LINKOPING
o UNIVERSITY

GPU Architecture Paradigm

= Optimized for high throughput

= |In theory, ~10x to ~100x higher throughput than CPU is
possible

= Massive hardware-multithreading hides memory access latency
= Massive parallelism
= GPUs are good at data-parallel computations

= multiple threads executing the same instruction on different
data, preferably located adjacently in memory

44

LINKOPING
Il." UNIVERSITY

The future will be heterogeneous!

Need 2 kinds of cores — often on same chip:

= For non-parallelizable code:
Parallelism only from running several serial applications

simultaneously on different cores
(e.g. on desktop: word processor, email, virus scanner, ... not much more)

- Few (ca. 4-8) "fat” cores — designed for low latency
(power-hungry, area-costly,
large caches, out-of-order issue / speculation)
for high single-thread performance

= For well-parallelizable code:
- hundreds of simple cores —
-.ll

designed for high throughput
at low power consumption
(power + area efficient)

45

LINKOPING
II.“ UNIVERSITY

Heterogeneous / Hybrid Multi-/Manycore

Key concept: Master-worker parallelism, offloading

= General-purpose CPU (master) processor controls execution
of worker processors by submitting tasks to them and
transfering operand data to the workers’ local memory

> Master offloads computation to the slaves

= Workers often optimized for heavy throughput computing

= Master could do something else while waiting for the result,
or switch to a power-saving mode

= Master and worker cores might reside
on the same chip (e.g., Cell/B.E.)
or on different chips (e.g., systems with GPU graphics cards)

= Workers might have access to off-chip main memory (e.g.,
Cell) or not (e.g., most GPUs)
46

LINKOPING
II.“ UNIVERSITY

Heterogeneous / Hybrid Multi-/Manycore Systems

= Example: GPU-based system:

Offload
heavy
computation

>

CPU |

Data
< transfer

iii_l

47

II LINKOPING
o UNIVERSITY

Multi-GPU Systems

= Connect one or few general-purpose (CPU) multicore
processors with shared off-chip memory to several GPUs

= [ncreasingly popular in high-performance computing, DNN

= Cost and (quite) energy effective if offloaded computation
fits GPU architecture well

Main Memory
(DRAM)

48

Il LINKOPING
o UNIVERSITY

Reconfigurable Computing Units

= FPGA - Field Programmable Gate Array

Licensed under CC BY 3.0 via Wikimedia Commons

49

KT REE
Example: Beowulf-class PC Clusters

Interconnection Network

p— il
Characteristics: N | &3 .
e off-the-shelf (PC) nodes L2 2% Mp

with off-the-shelf CPUs Distributed memory system 5ot
(Xeon, Opteron, ...) |

e commodity interconnect |
G-Ethernet, Myrinet, Infiniband, SCI Advantages:

e Open Source Unix + best price-performance ratio
Linux, BSD
+ low entry-level cost
Message passing computin
’ MPI, PgVI\ﬁ S L + vendor independent

+ scalable

+ rapid technology tracking

T. Sterling: The scientific workstation of the future may be a pile of PCs.
Communications of the ACM 39(9), Sep. 1996 .

LINKOPING
Il.u UNIVERSITY

Example Tetrallth (NSC 2018/2019)

oL TH "
eemeses | qraw

B SR

N
- .-

2 Intel Xeon Gold 6130 CPUs (2.1 GH

each with 16 cores (32 hardware threadS;

« 1832 "thin" nodes with 96 GiB of primary
memory (RAM)

« and 60 "fat" nodes with 384 GiB.

-2 1892 nodes, 60544 cores in total
All nodes are interconnected with a 100 Gbps

Intel Omni-Path network (Fat-Tree topology)

LINKOPING
II.“ UNIVERSITY

The Challenge

= Today, basically all computers are parallel computers!

Single-thread performance stagnating

Dozens of cores and hundreds of HW threads available per server
May even be heterogeneous (core types, accelerators)

Data locality matters

Large clusters for HPC and Data centers, require message passing

= Utilizing more than one CPU core requires thread-level parallelism
= One of the biggest software challenges: Exploiting parallelism

Need LOTS of (mostly, independent) tasks to keep cores/HW threads
busy and overlap waiting times (cache misses, 1/O accesses)

All application areas, not only traditional HPC
= General-purpose, data mining, graphics, games, embedded, DSP, ...

Affects HW/SW system architecture, programming languages,
algorithms, data structures ...

Parallel programming is more error-prone
(deadlocks, races, further sources of inefficiencies)

= And thus more expensive and time-consuming

LINKOPING
II.“ UNIVERSITY

Can’t the compiler fix it for us?

= Automatic parallelization?

= at compile time:

= Requires static analysis — not effective for pointer-based
languages

= needs programmer hints / rewriting ...
= ok for few benign special cases:
(Fortran) loop SIMDization,
extraction of instruction-level parallelism, ...
= at run time (e.g. speculative multithreading)
= High overheads, not scalable

= More about parallelizing compilers in TDDD56 + TDDEGS
53

LINKOPING
II.“ UNIVERSITY

And worse yet,

= A lot of variations/choices in hardware
= Many will have performance implications
= No standard parallel programming model
= portability issue

= Understanding the hardware will make it easier to make
programs get high performance

= Performance-aware programming gets more important
also for single-threaded code

= Adaptation leads to portability issue again
= How to write future-proof parallel programs?

54

II LINKOPING
® UNIVERSITY

Python Programming is Not Suitable
for Resource-Aware Computing

= Using a native programming language can give 1-2 orders of magnitude in
speedup

= Exploit multiple levels of parallelism and optimizations

Example:

Matrix-Multiply: relative speedup to a Python version (18 core Intel Xeon CPU)

Version Speedup Optimization

Python 1

C 47 Rewrite in a static, compiled
(“native”) progr. language

C with parallel loops 366 Extract multi-core parallelism
(OpenMP)

C with loops and memory optimization 6,727 Loop tiling for data locality

Loop vectorization using Intel AVX 62,806 Extract SIMD parallelism

SIMD instructions

Table source: Turing award lecture by J. Hennessy and D. Patterson, 2018. See also:
J. Hennessy, D. Patterson: A New Golden Age for Computer Architecture.
Communications of the ACM 62(2):48-60, Feb. 2019.

55

LINKOPING
II.“ UNIVERSITY

What we had learned so far ...

= Sequential von-Neumann model
programming, algorithms, data structures, complexity

= Sequential / few-threaded languages: C/C++, Java, Python, ...
not designed for exploiting massive parallelism

time T
T(n)=0(nlogn)

- —>
problem size

56

LINKOPING
Il.“ UNIVERSITY

... and what we need now

= Parallel programming!
= Parallel algorithms and data structures

= Analysis / cost model: parallel time, work, cost; scalability;

= Performance-awareness: data locality, load balancing, communication

time

A

T(n,p)=0 ((nlogn)p +logp)

number of
processing
units used |
/

problem size
57

LINKOPING
Il.u UNIVERSITY

Questions?

LINKOPING
II.“ UNIVERSITY

Homework

= Explain the difference between software multithreading
and hardware multithreading.

= Explain the difference between hardware multithreading
and multicore.

= For your own computer / smartphone, find out which CPU it has,
with how many cores and hardware threads.

59

