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Information

Lecture notes:available from the course page, latest 24 hours before the lecture.

Recommended literature:

Peter Marwedel: "Embedded System Design", 
Springer, 2nd edition 2011, 3d edition, 2018.

Edward Lee, Sanjit Seshia:“Introduction to Embedded Systems - A  
Cyber-Physical Systems Approach”,  
LeeSeshia.org, 1st edition 2011, 2nd edition 2015.
2 of  128TDDE35/ Embedded Systems



EMBEDDED SYSTEMS AND THEIR DESIGN

1. What is an Embedded System 
 

2. Characteristics of Embedded Applications 
 

3. Modeling of Embedded Systems 

4. The Traditional design Flow 
 

5. An Example 
 

6. A New Design Flow 
 

7. The System Level 
 

8. Power/Energy Consumption - a Major Issue
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That’s how we use microprocessors
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What is an Embedded System?

There are several definitions around!

 Some highlight what it is (not) used for:

“An embedded system is any sort of device which includes a programmable 
component but itself is not intended to be a general purpose computer.”
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What is an Embedded System?

There are several definitions around!

 Some highlight what it is (not) used for:

“An embedded system is any sort of device which includes a programmable 
component but itself is not intended to be a general purpose computer.”

 

 Some focus on what it is built from:

“An embedded system is a collection of programmable parts surrounded by 
ASICs and other standard components, that interact continuously with an 
environment through sensors and actuators.”
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What is an Embedded System? 

Some of the main characteristics:

 Dedicated (not general purpose) 

 Contains a programmable component 

 Interacts (continuously) with the environment
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Two Typical Implementation Architectures
Distributed Embedded System (automotive application)

SensorsActuators

Gateway

Gateway

CPU
RAM

FLASH

Input/Output

Network Interface
9 of  128TDDE35/ Embedded Systems



The Software Component

Software running on the programmable processors:

 Application tasks

 Real-Time Operating System

 I/O drivers, Network protocols, Middleware
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Characteristics of Embedded Applications

What makes them special?

 Like with “ordinary” applications, functionality and user interfaces are often 
very complex.

But, in addition to this:

 Time constraints

 Power constraints

 Cost constraints

 Safety

 Time to market
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Time constraints

 Embedded systems have to perform in real-time: if data is not ready by a 
certain deadline, the system fails to perform correctly. 

 Hard deadline: failure to meet leads to major hazards.

 Soft deadline: failure to meet is tolerated but affects quality of service.
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Power constraints

 There are several reasons why low power/energy consumption is required:

 Cost aspects:
High energy consumptionlarge electricity bill 

expensive power supply 
expensive cooling system

 Reliability
High power consumption high temperature that affects life time 

 Battery life
High energy consumption short battery life time

 Environmental impact
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Cost constraints

 Embedded systems are very often mass products in highly competitive 
markets and have to be shipped at a low cost.

What we are interested in:

 Manufacturing cost

 Design cost
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Safety

 Embedded systems are often used in life critical applications: avionics, 
automotive electronics, nuclear plants, medical applications, military 
applications, etc.

 Reliability and safety are major requirements. 
In order to guarantee safety during design:

- Formal verification: mathematics-based methods to verify 
certain properties of the designed system.

- Automatic synthesis:certain design steps are automatically 
performed by design tools.
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Short time to market

 In highly competitive markets it is critical to catch the market window: a short 
delay with the product on the market can have catastrophic financial 
consequences (even if the quality of the product is excellent).

 Design time has to be reduced!

- Good design methodologies.
- Efficient design tools.
- Reuse of previously designed and verified (hardw&softw) blocks.
- Good designers who understand both software and hardware!
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Why is Design of Embedded Systems Difficult?

 High Complexity

 Strong time&power constraints

 Low cost

 Short time to market

 Safety critical systems

In order to achieve these requirements, 
systems have to be highly optimized.
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Why is Design of Embedded Systems Difficult?

 High Complexity

 Strong time&power constraints

 Low cost

 Short time to market

 Safety critical systems

In order to achieve these requirements, 
systems have to be highly optimized.

Both hardware and software aspects 
have to be considered simultaneously!
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From Specifications to Implementations

 Specification: An informal description of basic requirements and properties 
of a system 

 The designer gets a specification as an input and, finally, has to 
produce an implementation.
This is usually done as a sequence of refinement steps.
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System Specifications

 A specification captures:

 The basic required behaviour of the system

- E.g. as a relation between inputs and outputs

 Other (non-functional) requirements

- time constraints

- power/energy constraints

- safety requirements

- environmental aspects

- cost, weight, etc.
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System Model

 Starting from the informal specification, as an early step in the design flow, a 
more formal system model is produced.

 The model is a description of certain aspects/properties of the system. 
Models are abstract, in the sense that they omit details and concentrate on 
aspects that are significant for the design process.

 There are several modeling approaches (and modeling languages) used for 
embedded system design; examples: 

 Dataflow Models

 Finite State Machines.
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Dataflow Models

 Systems are specified as directed graphs where:
 nodes represent computations (processes);
 arcs represent totally ordered sequences (streams) of data (tokens).
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Dataflow Models

 Systems are specified as directed graphs where:
 nodes represent computations (processes);
 arcs represent totally ordered sequences (streams) of data (tokens).

 Depending on their particular semantics, several models of computation 
based on dataflow have been defined:

 Kahn process networks
 Dataflow process networks
 Synchronous dataflow
 - - - - - - -
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Dataflow Models

 Systems are specified as directed graphs where:
 nodes represent computations (processes);
 arcs represent totally ordered sequences (streams) of data (tokens).

 Depending on their particular semantics, several models of computation 
based on dataflow have been defined:

 Kahn process networks (KPN)
 Dataflow process networks (DPN)
 Synchronous dataflow (SDF)
 - - - - - - -

 Dataflow models are suitable for signal-processing algorithms:
 Code/decode, filter, compression, etc.
 Streams of periodic and regular data samples 
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Dataflow Models

KPN model of encoder for Motion JPEG (M-JPEG) video compression format:
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Dataflow Models

SDF model of a Modem:
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Finite State Machines

 The system is characterised by explicitly depicting its states as well as the 
transitions from one state to another. 

 One particular state is specified as the initial one 

 States and transitions are in a finite number. 

 Transitions are triggered by input events. 

 Transitions generate outputs. 

 FSMs are suitable for modeling control dominated reactive systems (react on 
inputs with specific outputs)
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Finite State Machines

Elevator controller

 Input events: {r1, r2, r3}

 ri: request from floor i.

 Outputs: {d2, d1, n, u1, u2}

 di: go down i floors
 ui: go up i floors
 n: stay idle

 States: {S1, S2, S3}

 Si: elevator is at floor i.

S1

S3

S2

r2/u1

input event output

r1/d1

r2/n

r3/n

r1/n

r 2/d
1

r 3/u
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r3 /u2r1 /d2initial state
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A Design Example

T1

T8

T5

T7

T3

T6

T4

T2

The system to be implemented is modelled as a task graph:
 a node represents a task (a unit of functionality 

activated as response to a certain input and which 
generates a certain output).

 an edge represents a precedence constraint and 
data dependency between two tasks.

Period: 42 time units
 The task graph is activated every 42 time units  

an activation has to terminate in time less than 42.

Cost limit: 8 
 The total cost of the implemented system has to be 

less than 8.
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2. Generate a more formal mode
of the functionality, based on
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Such model is our task graph
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3. Simulate the model in order to
check the functionality. If 
needed make adjustments.

4. Choose an architecture 
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and, you hope, time and pow
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1. Start from some informal 
specification of functionality 
and a set of constraints.

2. Generate a more formal mode
of the functionality, based on
some modeling concept.
Such model is our task graph

3. Simulate the model in order to
check the functionality. If 
needed make adjustments.

4. Choose an architecture 
(μprocessor, buses, etc.) such
that cost limits are satisfied 
and, you hope, time and pow
er constraints are fulfilled.

5. Build a prototype and imple-
ment the system.
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Traditional Design Flow

1. Start from some informal 
specification of functionality 
and a set of constraints.

2. Generate a more formal mode
of the functionality, based on
some modeling concept.
Such model is our task graph

3. Simulate the model in order to
check the functionality. If 
needed make adjustments.

4. Choose an architecture 
(μprocessor, buses, etc.) such
that cost limits are satisfied 
and, you hope, time and pow
er constraints are fulfilled.

5. Build a prototype and imple-
ment the system.

6. Verify the system: neither 
time nor power constraints 
are satisfied!!!
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Now you are in great trouble: you
have spent a lot of time and mon
ey and nothing works!

 Go back to 4, choose a 
new architecture and start
a new implementation.

 Or negotiate with the cus-
tomer on the constraints.
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The Traditional Design Flow

 The consequences: 

 Delays in the design process

- Increased design cost

- Delays in time to market  missed market window 

 High cost of failed prototypes 

 Bad design decisions taken under time pressure

- Low quality, high cost products
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 We have the system model (task graph) which has been 
validated by simulation. 

 We decide on a certain μprocessor μp1, with cost 6.

 For each task the worst case execution time (WCET) when run 
on μp1 is estimated. 
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μprocessor 
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WCET

 We have the system model (task graph) which has been 
validated by simulation. 

 We decide on a certain μprocessor μp1, with cost 6.

 For each task the worst case execution time (WCET) when run 
on μp1 is estimated. 
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ExampleT1

T8

T5

T7
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Task WCET
T1 4
T2 6
T3 4
T4 7
T5 8
T6 12
T7 7
T8 10

task
- - - - - - - - - - - -

μprocessor 
arch. modelEstimator

WCET

 We have the system model (task graph) which has been 
validated by simulation. 

 We decide on a certain μprocessor μp1, with cost 6.

 For each task the worst case execution time (WCET) when run 
on μp1 is estimated. 
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T1

38 40 42 44 46 48 50 52 54 56 58 60 620 2 4 6 8 10 12 14 16 18 20 22 24 26 30 32 3428 36Time 64

T2 T4 T3 T5 T6 T7 T8

We generate a schedule:

ask WCET
T1 4
T2 6
T3 4
T4 7
T5 8
T6 12
T7 7
T8 10
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T7

T3
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T1

38 40 42 44 46 48 50 52 54 56 58 60 620 2 4 6 8 10 12 14 16 18 20 22 24 26 30 32 3428 36Time 64

T2 T4 T3 T5 T6 T7 T8

Using the architecture with μprocessor μp1 we got a solution with

 Execution time: 58 > 42

 Cost: 6 < 8

We have to try with another architecture!

We generate a schedule:

ask WCET
T1 4
T2 6
T3 4
T4 7
T5 8
T6 12
T7 7
T8 10
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We look after a μprocessor which is fast enough: μp2
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We look after a μprocessor which is fast enough: μp2

For each task the WCET, when run on μp2, is estimated.

ask WCET
T1 2
T2 3
T3 2
T4 3
T5 4
T6 6
T7 3
T8 5
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We look after a μprocessor which is fast enough: μp2

For each task the WCET, when run on μp2, is estimated.

Using the architecture with μprocessor μp2 we got a solution with

 Execution time: 28 < 42

 Cost: 15 > 8

We have to try with another architecture!

ask WCET
T1 2
T2 3
T3 2
T4 3
T5 4
T6 6
T7 3
T8 5
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We have to look for a multiprocessor solution
 In order to meet cost constraints try 2 cheap (and slow) μps:

μp3: cost 3 
μp4: cost 2 
interconnection bus: cost 1

μp3 μp4

Bus
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1 5 6

2 7 9
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We have to look for a multiprocessor solution
 In order to meet cost constraints try 2 cheap (and slow) μps:

μp3: cost 3 
μp4: cost 2 
interconnection bus: cost 1

For each task the WCET, when run on μp3 and μp4, is estimated.

μp3 μp4

Bus
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Now we have to map the tasks to processors:
μp3: T1, T3, T5, T6, T7, T8.
μp4: T2, T4.

If communicating tasks are mapped to different processors, they 
have to communicate over the bus.
Communication time has to be estimated; it depends on the 
amount of bits transferred between the tasks and on the speed of 
the bus. 
 
Estimated communication times:

C1-2: 1
C4-8: 1

sk
WCET

μp3 μp4

1 5 6

2 7 9

3 5 6

4 8 10

5 10 11

6 17 21

7 10 14
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μp3: T1, T3, T5, T6, T7, T8.
μp4: T2, T4. 
 
Estimated communication times:

C1-2: 1
C4-8: 1

T1

38 40 42 44 46 48 50 52 54 56 58 60 620 2 4 6 8 10 12 14 16 18 20 22 24 26 30 32 3428 36Time 6

T3 T5 T6 T7 T8μp3

μp4

bus

T2 T4
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We generate a schedule:

sk
WCET

μp3 μp4

1 5 6

2 7 9

3 5 6

4 8 10

5 10 11

6 17 21

7 10 14
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μp3: T1, T3, T5, T6, T7, T8.
μp4: T2, T4. 
 
Estimated communication times:

C1-2: 1
C4-8: 1

T1

38 40 42 44 46 48 50 52 54 56 58 60 620 2 4 6 8 10 12 14 16 18 20 22 24 26 30 32 3428 36Time 6

T3 T5 T6 T7 T8μp3

μp4

bus

T2 T4

C1-2 C4-8

We generate a schedule:

We have exceeded the allowed execution time (42)!

sk
WCET

μp3 μp4

1 5 6

2 7 9

3 5 6

4 8 10

5 10 11

6 17 21

7 10 14
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Try a new mapping; T5 to μp4, in order to increase parallelism.
Two new communications are introduced, with estimated times:

C3-5: 2
C5-7: 1

We generate a schedule:

The execution time is still 62, as before!

T1

38 40 42 44 46 48 50 52 54 56 58 60 620 2 4 6 8 10 12 14 16 18 20 22 24 26 30 32 3428 36Time 6

T3

T5

T6 T7 T8μp3

μp4

bus

T2 T4

C1-2 C4-8C3-5 C5-7

sk
WCET

μp3 μp4

1 5 6

2 7 9

3 5 6

4 8 10

5 10 11

6 17 21

7 10 14
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Try a new mapping; T5 to μp4, in order to increase parallelism.
Two new communications are introduced, with estimated times:

C3-5: 2
C5-7: 1

There exists a better schedule!

T1

38 40 42 44 46 48 50 52 54 56 58 60 620 2 4 6 8 10 12 14 16 18 20 22 24 26 30 32 3428 36Time 6

T3

T4

T6 T7 T8μp3

μp4

bus

T2 T5

C1-2 C5-7C3-5 C4-8

sk
WCET

μp3 μp4

1 5 6

2 7 9

3 5 6

4 8 10

5 10 11

6 17 21

7 10 14
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Try a new mapping; T5 to μp4, in order to increase parallelism.
Two new communications are introduced, with estimated times:

C3-5: 2
C5-7: 1

There exists a better schedule!

Execution time: 52 > 42
Cost: 6 < 8

T1

38 40 42 44 46 48 50 52 54 56 58 60 620 2 4 6 8 10 12 14 16 18 20 22 24 26 30 32 3428 36Time 6

T3

T4

T6 T7 T8μp3

μp4

bus

T2 T5

C1-2 C5-7C3-5 C4-8

sk
WCET

μp3 μp4

1 5 6

2 7 9

3 5 6

4 8 10

5 10 11

6 17 21

7 10 14
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 Possible solutions:
 Change μproc. μp3 with faster one  cost limits exceeded

μp3 μp4

Bus

sk
WCET

μp3 μp4

1 5 6

2 7 9

3 5 6

4 8 10

5 10 11

6 17 21

7 10 14
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 Possible solutions:
 Change μproc. μp3 with faster one  cost limits exceeded
 Implement part of the functionality in hardware as an ASIC 

Cost of ASIC: 1

μp3 μp4

Bus

ASIC

sk
WCET

μp3 μp4

1 5 6

2 7 9

3 5 6

4 8 10

5 10 11

6 17 21

7 10 14
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T

ExampleT1

T8

T5

T7

T3

T6

μp3 μp4

Bus

ASIC

 Possible solutions:
 Change μproc. μp3 with faster one  cost limits exceeded
 Implement part of the functionality in hardware as an ASIC

 New architecture

Cost of ASIC: 1

 Mapping
μp3: T1, T3, T6, T7.
μp4: T2, T4, T5.
ASIC: T8 with estimated WCET= 3

 New communication, with estimated time:
C7-8: 1

sk
WCET

μp3 μp4

1 5 6

2 7 9

3 5 6

4 8 10

5 10 11

6 17 21

7 10 14
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ExampleT1

T8

T5

T7

T3

T6

μp3 μp4

Bus

ASIC

 Mapping
μp3: T1, T3, T6, T7.
μp4: T2, T4, T5.
ASIC: T8 with estimated WCET= 3

 New communication, with estimated time:
C7-8: 1

T1

38 40 42 44 46 48 50 52 54 56 58 60 620 2 4 6 8 10 12 14 16 18 20 22 24 26 30 32 3428 36Time 6

T3

T4

T6 T7

T8

μp3

μp4

bus

T2 T5

ASIC

sk
WCET

μp3 μp4

1 5 6

2 7 9

3 5 6

4 8 10

5 10 11

6 17 21

7 10 14
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ExampleT1

T8

T5

T7

T3

T6

μp3 μp4

Bus

ASIC

Using this architecture we got a 
solution with:

 Execution time: 41 < 42
 Cost: 7 < 8

T1

38 40 42 44 46 48 50 52 54 56 58 60 620 2 4 6 8 10 12 14 16 18 20 22 24 26 30 32 3428 36Time 6

T3

T4

T6 T7

T8

μp3

μp4

bus

T2 T5

ASIC

sk
WCET

μp3 μp4

1 5 6

2 7 9

3 5 6

4 8 10

5 10 11

6 17 21

7 10 14
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Example
What did we achieve?

 We have selected an architecture.

 We have mapped tasks to the processors and ASIC.

 We have elaborated a a schedule.
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Example
What did we achieve?

 We have selected an architecture.

 We have mapped tasks to the processors and ASIC.

 We have elaborated a a schedule.

Extremely important!!!
Nothing has been built yet.
All decisions are based on simulation and estimation.
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Example
What did we achieve?

 We have selected an architecture.

 We have mapped tasks to the processors and ASIC.

 We have elaborated a a schedule.

Extremely important!!!
Nothing has been built yet.
All decisions are based on simulation and estimation.

 Now we can go and do the software and hardware implementation, with a high 
degree of confidence that we get a correct prototype.
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not OK not OK
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What is the essential difference 
compared to the “traditional” 
design flow?
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Informal Specification,
Constraints

Modeling

Testing

Arch. Selection

System 
architecture Mapping

Estimation

Mapped and 
scheduled 

model

Scheduling

OK
not OK not OK

OK
 OK

What is the essential difference 
compared to the “traditional” 
design flow?

 The inner loop which is per-
formed before the hardware/
software implementation.
This loop is performed severa
times as part of the design 
space exploration. Different 
architectures, mappings and 
schedules are explored, be-
fore the actual implementation
and prototyping.

 We get highly optimized good
quality solutions in short time
We have a good chance that 
the outer loop, including pro-
totyping, is not repeated.
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The Design Flow

 Formal verification

 It is impossible to do an exhaustive verification by simulation! 
Especially for safety critical systems formal verification is needed. 

 Hardware/Software codesign

 During the mapping/scheduling step we also decide what is going to be 
executed on a programmable processor (software) and what is going 
into hardware (ASIC, FPGA).

 During the implementation phase, hardware and software components 
have to be developed in a coordinated way, keeping care of their 
consistency (hardware/software cosimulation)
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The “Lower Levels”

 Software generation:

 Encoding in an implementation language (C, C++, assembler).

 Compiling (this can include particular optimizations for application 
specific processors, DSPs, etc.).

 Generation of a real-time kernel or adapting to an existing operating 
system.

 Testing and debugging (in the development environment).

 Several courses are teaching this part: Programming related courses, 
Algorithms and data structures, Compilers, operating systems, real-time 
systems, ....
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The “Lower Levels”

 Hardware synthesis:

 Encoding in a hardware description language (VHDL, Verilog)

 Successive synthesis steps: high-level, register-transfer level, logic-
level synthesis.

 Testing and debugging (by simulation)

 Several courses are teaching this part: Digital design, Electronics and VLSI 
related courses, Computer Architectures, ....
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The System Level

 TDTS07: System Design and Methodology (Modeling and Design of 

Embedded Systems) 
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Bring Power Consumption into the Picture

Why is power consumption an issue?

 Portable systems: battery life time!

 Systems with limited power budget: Mars Pathfinder, autonomous helicopter, ...

 Desktops and servers: high power consumption
 raises temperature and deteriorates performance & reliability

 increases the need for expensive cooling mechanisms

 One main difficulty with developing high performance chips is heat extraction.

 High power consumption has economical and ecological consequences.
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Sources of Power Dissipation in CMOS Devices

P 1
2--- C VDD

2 f NSW⋅ ⋅ ⋅ ⋅ QSC VDD f NSW⋅ ⋅ ⋅ Ileak VDD⋅+ +=

C = node capacitances
NSW = switching activities 

(number of gate transi-
tions per clock cycle)

f = frequency of operation

VDD = supply voltage
QSC = charge carried by 

short circuit cur-
rent per transition

Ileak = leakage current
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Sources of Power Dissipation in CMOS Devices

P 1
2--- C VDD

2 f NSW⋅ ⋅ ⋅ ⋅ QSC VDD f NSW⋅ ⋅ ⋅ Ileak VDD⋅+ +=

dynamic

C = node capacitances
NSW = switching activities 

(number of gate transi-
tions per clock cycle)

f = frequency of operation

VDD = supply voltage
QSC = charge carried by 

short circuit cur-
rent per transition

Ileak = leakage current
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Sources of Power Dissipation in CMOS Devices

P 1
2--- C VDD

2 f NSW⋅ ⋅ ⋅ ⋅ QSC VDD f NSW⋅ ⋅ ⋅ Ileak VDD⋅+ +=

dynamic

Switching power 
Power required to 
charge/discharge 
circuit nodes

Short-circ. power 
Dissipation due 
to short-circuit 
current

C = node capacitances
NSW = switching activities 

(number of gate transi-
tions per clock cycle)

f = frequency of operation

VDD = supply voltage
QSC = charge carried by 

short circuit cur-
rent per transition

Ileak = leakage current
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Sources of Power Dissipation in CMOS Devices

P 1
2--- C VDD

2 f NSW⋅ ⋅ ⋅ ⋅ QSC VDD f NSW⋅ ⋅ ⋅ Ileak VDD⋅+ +=

dynamic static

Switching power 
Power required to 
charge/discharge 
circuit nodes

Short-circ. power 
Dissipation due 
to short-circuit 
current

Leakage power 
Dissipation 
due to leakage 
current

C = node capacitances
NSW = switching activities 

(number of gate transi-
tions per clock cycle)

f = frequency of operation

VDD = supply voltage
QSC = charge carried by 

short circuit cur-
rent per transition

Ileak = leakage current
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Sources of Power Dissipation in CMOS Devices

 Earlier:
Leakage power has been considered negligible compared to dynamic.

 Today:
Total dissipation from leakage is approaching the total from dynamic.

 As transistor sizes shrink:
Leakage power becomes significant.

P 1
2--- C VDD

2 f NSW⋅ ⋅ ⋅ ⋅ QSC VDD f NSW⋅ ⋅ ⋅ Ileak VDD⋅+ +=

dynamic static

Switching power 
Power required to 
charge/discharge 
circuit nodes

Short-circ. power 
Dissipation due 
to short-circuit 
current

Leakage power 
Dissipation 
due to leakage 
current
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Sources of Power Dissipation in CMOS Devices

 Leakage power is consumed even if the circuit is idle (standby). The only way 
to avoid is decoupling from power.

P 1
2--- C VDD

2 f NSW⋅ ⋅ ⋅ ⋅ QSC VDD f NSW⋅ ⋅ ⋅ Ileak VDD⋅+ +=

dynamic static

Switching power 
Power required to 
charge/discharge 
circuit nodes

Short-circ. power 
Dissipation due 
to short-circuit 
current

Leakage power 
Dissipation 
due to leakage 
current
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Sources of Power Dissipation in CMOS Devices

 Leakage power is consumed even if the circuit is idle (standby). The only way 
to avoid is decoupling from power.

 Short circuit power is up to 10% of total.

P 1
2--- C VDD

2 f NSW⋅ ⋅ ⋅ ⋅ QSC VDD f NSW⋅ ⋅ ⋅ Ileak VDD⋅+ +=

dynamic static

Switching power 
Power required to 
charge/discharge 
circuit nodes

Short-circ. power 
Dissipation due 
to short-circuit 
current

Leakage power 
Dissipation 
due to leakage 
current
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Sources of Power Dissipation in CMOS Devices

 Leakage power is consumed even if the circuit is idle (standby). The only way 
to avoid is decoupling from power.

 Short circuit power can be around 10% of total.

 Switching power is still the main source of power consumption.

P 1
2--- C VDD

2 f NSW⋅ ⋅ ⋅ ⋅ QSC VDD f NSW⋅ ⋅ ⋅ Ileak VDD⋅+ +=

dynamic static

Switching power 
Power required to 
charge/discharge 
circuit nodes

Short-circ. power 
Dissipation due 
to short-circuit 
current

Leakage power 
Dissipation 
due to leakage 
current
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Power and Energy Consumption

NCY = number of cycles needed for the particular task.

P 1
2--- C VDD

2 f NSW⋅ ⋅ ⋅ ⋅=

E P t⋅ 1
2--- C VDD

2 NCY NSW⋅ ⋅ ⋅ ⋅= =
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Power and Energy Consumption

NCY = number of cycles needed for the particular task.

 In certain situations we are concerned about power consumption:
 heath dissipation, cooling:
 physical deterioration due to temperature.

 Sometimes we want to reduce total energy consumed:
 battery life.

P 1
2--- C VDD

2 f NSW⋅ ⋅ ⋅ ⋅=

E P t⋅ 1
2--- C VDD

2 NCY NSW⋅ ⋅ ⋅ ⋅= =
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Power and Energy Consumption

 Reducing power/energy consumption:

 Reduce supply voltage

P 1
2--- C VDD

2 f NSW⋅ ⋅ ⋅ ⋅=

E P t⋅ 1
2--- C VDD

2 NCY NSW⋅ ⋅ ⋅ ⋅= =
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Power and Energy Consumption

 Reducing power/energy consumption:

 Reduce supply voltage

 Reduce switching activity

P 1
2--- C VDD

2 f NSW⋅ ⋅ ⋅ ⋅=

E P t⋅ 1
2--- C VDD

2 NCY NSW⋅ ⋅ ⋅ ⋅= =
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Power and Energy Consumption

 Reducing power/energy consumption:

 Reduce supply voltage

 Reduce switching activity

 Reduce capacitance

P 1
2--- C VDD

2 f NSW⋅ ⋅ ⋅ ⋅=

E P t⋅ 1
2--- C VDD

2 NCY NSW⋅ ⋅ ⋅ ⋅= =
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Power and Energy Consumption

 Reducing power/energy consumption:

 Reduce supply voltage

 Reduce switching activity

 Reduce capacitance

 Reduce number of cycles

P 1
2--- C VDD

2 f NSW⋅ ⋅ ⋅ ⋅=

E P t⋅ 1
2--- C VDD

2 NCY NSW⋅ ⋅ ⋅ ⋅= =
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System Level Power/Energy Optimization

 Dynamic techniques: applied at run time.

These techniques are applied at run-time in order to reduce power 
consumption by exploiting idle or low-workload periods.

 Static techniques: applied at design time.

 Compilation for low power: instruction selection considering their pow-
er profile, data placement in memory, register allocation.

 Algorithm design: find the algorithm which is the most power-efficient.
 Task mapping and scheduling.
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System Level Power/Energy Optimization

Three techniques will be discussed:

1. Dynamic power management: a dynamic technique. 
 

2. Task mapping: a static technique. 
 

3. Task scheduling with dynamic power scaling: static & dynamic.
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Dynamic Power Management (DPM)

application

hardware

power aware OS
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Dynamic Power Management (DPM)

application

hardware

Decisions:

 Switching among multiple power states:

 idle

 sleep

 run

 Switching among multiple frequencies 
and voltage levels.

power aware OS
89 of  128TDDE35/ Embedded Systems



Dynamic Power Management (DPM)

application

hardware

Decisions:

 Switching among multiple power states:

 idle

 sleep

 run

 Switching among multiple frequencies 
and voltage levels.

Goal:
 Energy optimization
 QoS constraints satisfied

power aware OS
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







Dynamic Power Management (DPM)

Intel Xscale Processor

IDLE SLEEP

RUN

90μs

40mW 160μW

10μs
10μs 140ms

1.5ms

RUN: operational

IDLE: Clocks to the CPU 
are disabled; recovery 
is through interrupt.

SLEEP: Mainly powered 
off; recovery through 
wake-up event.

Other intermediate 
states: DEEP IDLE, 
STANDBY, DEEP SLEEP
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







Dynamic Power Management (DPM)

Intel Xscale Processor

RUN
RUN

RUN
RUN

IDLE SLEEP

RUN

0.75V, 60mW 
150MHz

1.3V, 450mW 
600MHz

1.6V, 900mW 
800MHz

90μs

40mW 160μW

10μs
10μs 140ms

1.5ms

160μs

RUN: operational

IDLE: Clocks to the CPU 
are disabled; recovery 
is through interrupt.

SLEEP: Mainly powered 
off; recovery through 
wake-up event.

Other intermediate 
states: DEEP IDLE, 
STANDBY, DEEP SLEEP
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The Basic Concept of DPM

 When there are requests for a device  the device is busy;  
otherwise it is idle.

 When the device is idle, it can be shut down to enter a low-power sleeping state.
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The Basic Concept of DPM

 When there are requests for a device  the device is busy;  
otherwise it is idle.

 When the device is idle, it can be shut down to enter a low-power sleeping state.

T1 T4

Workload

Time

Requests Requests
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The Basic Concept of DPM

 When there are requests for a device  the device is busy;  
otherwise it is idle.

 When the device is idle, it can be shut down to enter a low-power sleeping state.

BusyBusy

T1 T4

Device state

Workload

Time

Requests Requests

Idle
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The Basic Concept of DPM

 When there are requests for a device  the device is busy;  
otherwise it is idle.

 When the device is idle, it can be shut down to enter a low-power sleeping state.

BusyBusy

Working WorkingSleeping

T1 T4

Device state

Power state

Workload

Time

Requests Requests

Idle

Tsd Twu
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The Basic Concept of DPM

 When there are requests for a device  the device is busy;  
otherwise it is idle.

 When the device is idle, it can be shut down to enter a low-power sleeping state.

 Changing the power state takes time and extra energy.
 Tsd : shutdown delay
 Twu : wake-up delay

Send the device to sleep only if the saved energy justifies the overhead!

BusyBusy

Working WorkingSleeping

T1 T4

Device state

Power state

Workload

Time

Requests Requests

Idle

Tsd Twu
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The Basic Concept of DPM

 When there are requests for a device  the device is busy;  
otherwise it is idle.

 When the device is idle, it can be shut down to enter a low-power sleeping state.

 The main Problems:
 Don’t shut down such that delays occur too frequently.
 Don’t shut down such that the savings due to the sleeping are smaller 

than the energy overhead of the state changes.

BusyBusy

Working WorkingSleeping

T1 T4

Device state

Power state

Workload

Time

Requests Requests

Idle

Tsd Twu
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Power Management Policies

 When there are requests for a device  the device is busy;  
otherwise it is idle.

 When the device is idle, it can be shut down to enter a low-power sleeping state.

 Power management policies are concerned with predictions of idle periods:
 For shut-down: try to predict how long the idle period will be in order to 

decide if a shut-down should be performed.
 For wake-up: try to predict when the idle period ends, in order to avoid 

user delays due to Twu. - Very difficult!

BusyBusy

Working WorkingSleeping

T1 T4

Device state

Power state

Workload

Time

Requests Requests

Idle

Tsd Twu
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Dynamic Power Management (DPM)

 For many embedded systems DPM techniques, like presented before, are not 
appropriate:

 They have time constraints  we have to keep deadlines (usually we 
cannot afford shut-down and wake-up times).

 The OS is simple&fast  no sophisticated run-time techniques.

 The application is known at design time  we know a lot about the 
application and optimize already at design time. 
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τ

τ

Mapping for Low Energy
τ1

τ8

τ5

τ7

τ3

τ6

4

2

μp3 μp4

Bus
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τ

τ

Mapping for Low Energy

μp3 μp4

Bus

Task
WCET Energy

μp3 μp4 μp3 μp4
τ1 5 6 5 3
τ2 7 9 8 4
τ3 5 6 5 3
τ4 8 10 6 4
τ5 10 11 8 6
τ6 17 21 15 10
τ7 10 14 8 7
τ8 15 19 14 9

Consider a mapping:
μp3: τ1, τ3, τ6, τ7, τ8.
μp4: τ2, τ4, τ5.

Communication times and energy:
C1-2: t = 1; E = 3. C3-5: t = 2; E = 5.
C4-8: t = 1; E = 3. C5-7: t = 1; E = 3.

τ1

τ8

τ5

τ7

τ3

τ6

4

2
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τ

τ

Mapping for Low Energy

μp3 μp4

Bus

τ1

38 40 42 44 46 48 50 52 54 56 58 60 620 2 4 6 8 10 12 14 16 18 20 22 24 26 30 32 3428 36Time 64

τ3
τ4

τ6 τ7 τ8μp3

μp4

bus

τ2 τ5

C1-2 C5-7C3-5 C4-8

Consider a mapping:
μp3: τ1, τ3, τ6, τ7, τ8.
μp4: τ2, τ4, τ5.

Communication times and energy:
C1-2: t = 1; E = 3. C3-5: t = 2; E = 5.
C4-8: t = 1; E = 3. C5-7: t = 1; E = 3.

τ1

τ8

τ5

τ7

τ3

τ6

4

2

Task
WCET Energy

μp3 μp4 μp3 μp4
τ1 5 6 5 3
τ2 7 9 8 4
τ3 5 6 5 3
τ4 8 10 6 4
τ5 10 11 8 6
τ6 17 21 15 10
τ7 10 14 8 7
τ8 15 19 14 9
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τ

τ

Mapping for Low Energy

Execution time: 52; Energy consumed: 75

μp3 μp4

Bus

τ1

38 40 42 44 46 48 50 52 54 56 58 60 620 2 4 6 8 10 12 14 16 18 20 22 24 26 30 32 3428 36Time 64

τ3
τ4

τ6 τ7 τ8μp3

μp4

bus

τ2 τ5

C1-2 C5-7C3-5 C4-8

Consider a mapping:
μp3: τ1, τ3, τ6, τ7, τ8.
μp4: τ2, τ4, τ5.

Communication times and energy:
C1-2: t = 1; E = 3. C3-5: t = 2; E = 5.
C4-8: t = 1; E = 3. C5-7: t = 1; E = 3.

τ1

τ8

τ5

τ7

τ3

τ6

4

2

Task
WCET Energy

μp3 μp4 μp3 μp4
τ1 5 6 5 3
τ2 7 9 8 4
τ3 5 6 5 3
τ4 8 10 6 4
τ5 10 11 8 6
τ6 17 21 15 10
τ7 10 14 8 7
τ8 15 19 14 9
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τ

τ

Mapping for Low Energy

μp3 μp4

Bus
Consider another mapping:
μp3: τ1, τ3, τ6, τ7, τ8.
μp4: τ2, τ4, τ5, τ8.

Communication times and energy:
C1-2: t = 1; E = 3. C3-5: t = 2; E = 5.
C7-8: t = 1; E = 3. C5-7: t = 1; E = 3.

τ1

τ8

τ5

τ7

τ3

τ6

4

2

τ1

38 40 42 44 46 48 50 52 54 56 58 60 620 2 4 6 8 10 12 14 16 18 20 22 24 26 30 32 3428 36Time 64

τ3
τ4

τ6 τ7

τ8

μp3

μp4

bus

τ2 τ5

C1-2 C5-7C3-5 C7-8

Task
WCET Energy

μp3 μp4 μp3 μp4
τ1 5 6 5 3
τ2 7 9 8 4
τ3 5 6 5 3
τ4 8 10 6 4
τ5 10 11 8 6
τ6 17 21 15 10
τ7 10 14 8 7
τ8 15 19 14 9
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τ

τ

Mapping for Low Energy

Execution time: 57; Energy consumed: 70

μp3 μp4

Bus

τ1

τ8

τ5

τ7

τ3

τ6

4

2

Consider a mapping:
μp3: τ1, τ3, τ6, τ7.
μp4: τ2, τ4, τ5, τ8.

Communication times and energy:
C1-2: t = 1; E = 3. C3-5: t = 2; E = 5.
C7-8: t = 1; E = 3. C5-7: t = 1; E = 3.

τ1

38 40 42 44 46 48 50 52 54 56 58 60 620 2 4 6 8 10 12 14 16 18 20 22 24 26 30 32 3428 36Time 64

τ3
τ4

τ6 τ7

τ8

μp3

μp4

bus

τ2 τ5

C1-2 C5-7C3-5 C7-8

Task
WCET Energy

μp3 μp4 μp3 μp4
τ1 5 6 5 3
τ2 7 9 8 4
τ3 5 6 5 3
τ4 8 10 6 4
τ5 10 11 8 6
τ6 17 21 15 10
τ7 10 14 8 7
τ8 15 19 14 9
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τ

τ

Mapping for Low Energy

 The second mapping with τ8 on μp4 consumes less energy;

 Assume that we have a maximum allowed delay = 60.

This second mapping is preferable, even if it is slower!

μp3 μp4

Bus

τ1

τ8

τ5

τ7

τ3

τ6

4

2

Task
WCET Energy

μp3 μp4 μp3 μp4
τ1 5 6 5 3
τ2 7 9 8 4
τ3 5 6 5 3
τ4 8 10 6 4
τ5 10 11 8 6
τ6 17 21 15 10
τ7 10 14 8 7
τ8 15 19 14 9
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Real-Time Scheduling with Dynamic Voltage Scaling

 The energy consumed by a task, due to switching power:

E 1
2--- C VDD

2 NCY NSW⋅ ⋅ ⋅ ⋅=
NSW = number of gate transitions per clock cycle.

NCY = number of cycles needed for the task.
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Real-Time Scheduling with Dynamic Voltage Scaling

 The energy consumed by a task, due to switching power:

 Reducing supply voltage VDD is the efficient way to reduce energy consumption.

 The frequency at which the processor can be operated depends on VDD:

E 1
2--- C VDD

2 NCY NSW⋅ ⋅ ⋅ ⋅=

f k
VDD Vt–( )2

VDD
-----------------------------⋅= ,  k: circuit dependent constant; Vt: threshold voltage.

NSW = number of gate transitions per clock cycle.

NCY = number of cycles needed for the task.
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Real-Time Scheduling with Dynamic Voltage Scaling

 The energy consumed by a task, due to switching power:

 Reducing supply voltage VDD is the efficient way to reduce energy consumption.

 The frequency at which the processor can be operated depends on VDD:

 The execution time of the task:

E 1
2--- C VDD

2 NCY NSW⋅ ⋅ ⋅ ⋅=

f k
VDD Vt–( )2

VDD
-----------------------------⋅=

texe NCY
VDD

k VDD Vt–( )2⋅
-------------------------------------⋅=

,  k: circuit dependent constant; Vt: threshold voltage.

Depends on VDD!

NSW = number of gate transitions per clock cycle.

NCY = number of cycles needed for the task.
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Real-Time Scheduling with Dynamic Voltage Scaling

 The (classical) scheduling problem:

Which task to execute at a certain moment on a certain processor so that time 
constraints are fulfilled?
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Real-Time Scheduling with Dynamic Voltage Scaling

 The (classical) scheduling problem:

Which task to execute at a certain moment on a certain processor so that time 
constraints are fulfilled?

 The scheduling problem with voltage scaling:

Which task to execute at a certain moment on a certain processor, and at which 
voltage level, so that time constraints are fulfilled and energy consumption is 
minimised?
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Real-Time Scheduling with Dynamic Voltage Scaling

 The (classical) scheduling problem:

Which task to execute at a certain moment on a certain processor so that time 
constraints are fulfilled?

 The scheduling problem with voltage scaling:

Which task to execute at a certain moment on a certain processor, and at which 
voltage level, so that time constraints are fulfilled and energy consumption is 
minimised?

 The problem: reducing supply voltage extends execution time!
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Variable Voltage Processors

RUN
RUN

RUN
RUN

IDLE SLEEP

RUN

0.75V, 60mW 
150MHz

1.3V, 450mW 
600MHz

1.6V, 900mW 
800MHz

90μs

40mW 160μW

10μs
10μs 140ms

1.5ms

160μs
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Variable Voltage Processors

 Several supply voltage levels are available.

 Supply voltage can be changed during run-time.

 Frequency is adjusted to the current supply voltage.

0.75V, 60mW 
150MHz

1.3V, 450mW 
600MHz

1.6V, 900mW 
800MHz

RUN
RUN

RUN
RUN

RUN
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The Basic Principle
 We consider a single task τ:

 total computation: 109 execution cycles.
 deadline: 25 seconds.
 processor nominal (maximum) voltage: 5V.
 energy: 40 nJ/cycle at nominal voltage.
 processor speed: 50MHz (50×106 cycles/sec) at nominal voltage.
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The Basic Principle
 We consider a single task τ:

 total computation: 109 execution cycles.
 deadline: 25 seconds.
 processor nominal (maximum) voltage: 5V.
 energy: 40 nJ/cycle at nominal voltage.
 processor speed: 50MHz (50×106 cycles/sec) at nominal voltage.

0 5 10 15 20 25 time (sec)

V2

52

slack

Etotal = 109×(40×10-9) = 40 J
texe = 109/(50×106) = 20 sec

109 cycles

40 nJ/cycle
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The Basic Principle
 We consider a single task τ:

 total computation: 109 execution cycles.
 deadline: 25 seconds.
 processor nominal (maximum) voltage: 5V.
 energy: 40 nJ/cycle at nominal voltage; at 2.5V: 40×2.52/52=10nJ/cycle
 processor speed: 50MHz (50×106 cycles/sec) at nominal voltage; 

at 2.5V: 50×2.5/5 = 25MHz (25×106 cycles/sec).

0 5 10 15 20 25 time (sec)

V2

52

2.52

750×106 cycles 250×106 cycles

40 nJ/cycle

10 nJ/cycle
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5J
The Basic Principle
 We consider a single task τ:

 total computation: 109 execution cycles.
 deadline: 25 seconds.
 processor nominal (maximum) voltage: 5V.
 energy: 40 nJ/cycle at nominal voltage; at 2.5V: 40×2.52/52=10nJ/cycle
 processor speed: 50MHz (50×106 cycles/sec) at nominal voltage; 

at 2.5V: 50×2.5/5 = 25MHz (25×106 cycles/sec).

0 5 10 15 20 25 time (sec)

V2

52

2.52

750×106 cycles 250×106 cycles

Etotal = 0.75×109×(40×10-9) + 0.25×109×(10×10-9)= 32.
texe = 0.75×109/(50×106) + 0.25×109/(25×106)= 25 sec40 nJ/cycle

10 nJ/cycle
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The Basic Principle
 We consider a single task τ:

 total computation: 109 execution cycles.
 deadline: 25 seconds.
 processor nominal (maximum) voltage: 5V.
 energy: 40 nJ/cycle at nominal voltage; at 2.5V: 40×2.52/52=10nJ/cycle
 processor speed: 50MHz (50×106 cycles/sec) at nominal voltage; 

at 2.5V: 50×2.5/5 = 25MHz (25×106 cycles/sec).

Let’s try a different solution!
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The Basic Principle
 We consider a single task τ:

 total computation: 109 execution cycles.
 deadline: 25 seconds.
 processor nominal (maximum) voltage: 5V.
 energy: 40 nJ/cycle at nominal voltage; at 4V: 40×42/52=25nJ/cycle
 processor speed: 50MHz (50×106 cycles/sec) at nominal voltage; 

at 4V: 50×4/5 = 40MHz (40×106 cycles/sec).

0 5 10 15 20 25 time (sec)

V2

52

42

109 cycles

25 nJ/cycle
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The Basic Principle
 We consider a single task τ:

 total computation: 109 execution cycles.
 deadline: 25 seconds.
 processor nominal (maximum) voltage: 5V.
 energy: 40 nJ/cycle at nominal voltage; at 4V: 40×42/52=25nJ/cycle
 processor speed: 50MHz (50×106 cycles/sec) at nominal voltage; 

at 4V: 50×4/5 = 40MHz (40×106 cycles/sec).

0 5 10 15 20 25 time (sec)

V2

52

42

109 cycles

Etotal = 109×(25×10-9) = 25 J
texe = 109/(40×106) = 25 sec

25 nJ/cycle
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The Basic Principle
 We consider a single task τ:

 total computation: 109 execution cycles.
 deadline: 25 seconds.
 processor nominal (maximum) voltage: 5V.
 energy: 40 nJ/cycle at nominal voltage; at 4V: 40×42/52=25nJ/cycle
 processor speed: 50MHz (50×106 cycles/sec) at nominal voltage; 

at 4V: 50×4/5 = 40MHz (40×106 cycles/sec).

0 5 10 15 20 25 time (sec)

V2

52

42

109 cycles

Etotal = 109×(25×10-9) = 25 J
texe = 109/(40×106) = 25 sec

If a processor uses a single supply voltage and 
completes a program just on deadline, the energy 
consumption is minimised.

25 nJ/cycle
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The Basic Principle
 We consider two tasks τ1 and τ2:

 Computation τ1: 250×106 execution cycles; τ2: 750×106 execution cycles
 deadline: 25 seconds.
 processor nominal (maximum) voltage: 5V.
 energy: 40 nJ/cycle at nominal voltage; at 4V: 40×42/52=25nJ/cycle
 processor speed: 50MHz (50×106 cycles/sec) at nominal voltage; 

at 4V: 50×4/5 = 40MHz (40×106 cycles/sec).

τ1

τ2
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The Basic Principle
 We consider two tasks τ1 and τ2:

 Computation τ1: 250×106 execution cycles; τ2: 750×106 execution cycles
 deadline: 25 seconds.
 processor nominal (maximum) voltage: 5V.
 energy: 40 nJ/cycle at nominal voltage; at 4V: 40×42/52=25nJ/cycle
 processor speed: 50MHz (50×106 cycles/sec) at nominal voltage; 

at 4V: 50×4/5 = 40MHz (40×106 cycles/sec).

Etotal = 109×(25×10-9) = 25 J
texe = 109/(40×106) = 25 sec

0 5 10 15 20 25 time (sec)

V2

52

42

109 cycles

τ1 τ2
25 

nJ/cycle 25 nJ/cycle
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Considering Task Particularities

 Energy consumed by a task:

 Average energy consumed by task per cycle:

 Often tasks differ from each other in terms of executed operations  
NSW and C differ from one task to the other. 

 
The average energy consumed per cycle differs from task to task.

E 1
2--- C VDD

2 NCY NSW⋅ ⋅ ⋅ ⋅=

ECY
1
2--- C VDD

2 NSW⋅ ⋅ ⋅=

NSW = number of gate transitions 
per clock cycle.

C = switched capacitance per 
clock cycle.
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Considering Task Particularities

 If power consumption per cycle differs from task to task the “basic principle” 
is not longer true! 
 
Voltage levels have to be reduced with priority for those tasks which have a 
larger energy consumption per cycle.

 One individual voltage level has to be established for each task, so that 
deadlines are just satisfied.



Conclusions

 Embedded systems are everywhere.

 They have to satisfy strong timing, safety, power, and cost constraints.

 An efficient design flow, with iterations at the system level, is needed in 
order to support the design of complex embedded systems.

 System level design steps are performed before the start of the actual 
implementation of hardware and software components!

 The input to the actual design flow is an abstract model of the system.

 Power consumption becomes a central issue of the design process.
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	What is an Embedded System?
	There are several definitions around!
	Some highlight what it is (not) used for:

	“An embedded system is any sort of device which includes a programmable component but itself is not intended to be a general purpose computer.”
	Some focus on what it is built from:

	“An embedded system is a collection of programmable parts surrounded by ASICs and other standard components, that interact continuously with an environment through sensors and actuators.”

	What is an Embedded System?
	Some of the main characteristics:
	Dedicated (not general purpose)
	Contains a programmable component
	Interacts (continuously) with the environment


	Two Typical Implementation Architectures
	Telecommunication System on Chip

	Two Typical Implementation Architectures
	Distributed Embedded System (automotive application)

	The Software Component
	Software running on the programmable processors:
	Application tasks
	Real-Time Operating System
	I/O drivers, Network protocols, Middleware


	Characteristics of Embedded Applications
	What makes them special?
	Like with “ordinary” applications, functionality and user interfaces are often very complex.

	But, in addition to this:
	Time constraints
	Power constraints
	Cost constraints
	Safety
	Time to market


	Time constraints
	Embedded systems have to perform in real-time: if data is not ready by a certain deadline, the system fails to perform correctly.
	Hard deadline: failure to meet leads to major hazards.
	Soft deadline: failure to meet is tolerated but affects quality of service.

	Power constraints
	There are several reasons why low power/energy consumption is required:
	Cost aspects:
	High energy consumption ﬁ large electricity bill expensive power supply expensive cooling system
	Reliability

	High power consumption ﬁ high temperature that affects life time
	Battery life

	High energy consumption ﬁ short battery life time
	Environmental impact


	Cost constraints
	Embedded systems are very often mass products in highly competitive markets and have to be shipped at a low cost.
	What we are interested in:
	Manufacturing cost
	Design cost


	Safety
	Embedded systems are often used in life critical applications: avionics, automotive electronics, nuclear plants, medical applications, military applications, etc.
	Reliability and safety are major requirements. In order to guarantee safety during design:
	- Formal verification: mathematics-based methods to verify certain properties of the designed system.
	- Automatic synthesis: certain design steps are automatically performed by design tools.

	Short time to market
	In highly competitive markets it is critical to catch the market window: a short delay with the product on the market can have catastrophic financial consequences (even if the quality of the product is excellent).
	Design time has to be reduced!
	- Good design methodologies.
	- Efficient design tools.
	- Reuse of previously designed and verified (hardw&softw) blocks.
	- Good designers who understand both software and hardware!

	Why is Design of Embedded Systems Difficult?
	High Complexity
	Strong time&power constraints
	Low cost
	Short time to market
	Safety critical systems
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	We have mapped tasks to the processors and ASIC.
	We have elaborated a a schedule.


	Example
	What did we achieve?
	We have selected an architecture.
	We have mapped tasks to the processors and ASIC.
	We have elaborated a a schedule.

	Extremely important!!!
	Nothing has been built yet.
	All decisions are based on simulation and estimation.

	Example
	What did we achieve?
	We have selected an architecture.
	We have mapped tasks to the processors and ASIC.
	We have elaborated a a schedule.

	Extremely important!!!
	Nothing has been built yet.
	All decisions are based on simulation and estimation.
	Now we can go and do the software and hardware implementation, with a high degree of confidence that we get a correct prototype.


	The Design Flow
	Formal verification
	It is impossible to do an exhaustive verification by simulation! Especially for safety critical systems formal verification is needed.
	Hardware/Software codesign

	During the mapping/scheduling step we also decide what is going to be executed on a programmable processor (software) and what is going into hardware (ASIC, FPGA).
	During the implementation phase, hardware and software components have to be developed in a coordinated way, keeping care of their consistency (hardware/software cosimulation)

	The “Lower Levels”
	Software generation:
	Encoding in an implementation language (C, C++, assembler).
	Compiling (this can include particular optimizations for application specific processors, DSPs, etc.).
	Generation of a real-time kernel or adapting to an existing operating system.
	Testing and debugging (in the development environment).
	Several courses are teaching this part: Programming related courses, Algorithms and data structures, Compilers, operating systems, real-time systems, ....


	The “Lower Levels”
	Hardware synthesis:
	Encoding in a hardware description language (VHDL, Verilog)
	Successive synthesis steps: high-level, register-transfer level, logic- level synthesis.
	Testing and debugging (by simulation)
	Several courses are teaching this part: Digital design, Electronics and VLSI related courses, Computer Architectures, ....


	The System Level
	TDTS07: System Design and Methodology (Modeling and Design of Embedded Systems)

	Bring Power Consumption into the Picture
	Why is power consumption an issue?
	Portable systems: battery life time!
	Systems with limited power budget: Mars Pathfinder, autonomous helicopter, ...
	Desktops and servers: high power consumption
	raises temperature and deteriorates performance & reliability
	increases the need for expensive cooling mechanisms
	One main difficulty with developing high performance chips is heat extraction.
	High power consumption has economical and ecological consequences.



	Sources of Power Dissipation in CMOS Devices
	Sources of Power Dissipation in CMOS Devices
	Sources of Power Dissipation in CMOS Devices
	Sources of Power Dissipation in CMOS Devices
	Sources of Power Dissipation in CMOS Devices
	Earlier:
	Leakage power has been considered negligible compared to dynamic.
	Today:

	Total dissipation from leakage is approaching the total from dynamic.
	As transistor sizes shrink:

	Leakage power becomes significant.

	Sources of Power Dissipation in CMOS Devices
	Leakage power is consumed even if the circuit is idle (standby). The only way to avoid is decoupling from power.

	Sources of Power Dissipation in CMOS Devices
	Leakage power is consumed even if the circuit is idle (standby). The only way to avoid is decoupling from power.
	Short circuit power is up to 10% of total.

	Sources of Power Dissipation in CMOS Devices
	Leakage power is consumed even if the circuit is idle (standby). The only way to avoid is decoupling from power.
	Short circuit power can be around 10% of total.
	Switching power is still the main source of power consumption.

	Power and Energy Consumption
	NCY = number of cycles needed for the particular task.

	Power and Energy Consumption
	NCY = number of cycles needed for the particular task.
	In certain situations we are concerned about power consumption:
	heath dissipation, cooling:
	physical deterioration due to temperature.
	Sometimes we want to reduce total energy consumed:

	battery life.


	Power and Energy Consumption
	Reducing power/energy consumption:
	Reduce supply voltage

	Power and Energy Consumption
	Reducing power/energy consumption:
	Reduce supply voltage
	Reduce switching activity

	Power and Energy Consumption
	Reducing power/energy consumption:
	Reduce supply voltage
	Reduce switching activity
	Reduce capacitance

	Power and Energy Consumption
	Reducing power/energy consumption:
	Reduce supply voltage
	Reduce switching activity
	Reduce capacitance
	Reduce number of cycles

	System Level Power/Energy Optimization
	Dynamic techniques: applied at run time.
	These techniques are applied at run-time in order to reduce power consumption by exploiting idle or low-workload periods.
	Static techniques: applied at design time.
	Compilation for low power: instruction selection considering their power profile, data placement in memory, register allocation.
	Algorithm design: find the algorithm which is the most power-efficient.
	Task mapping and scheduling.


	System Level Power/Energy Optimization
	Three techniques will be discussed:
	1. Dynamic power management: a dynamic technique.
	2. Task mapping: a static technique.
	3. Task scheduling with dynamic power scaling: static & dynamic.

	Dynamic Power Management (DPM)
	Dynamic Power Management (DPM)
	Dynamic Power Management (DPM)
	Dynamic Power Management (DPM)
	Intel Xscale Processor

	Dynamic Power Management (DPM)
	Intel Xscale Processor

	The Basic Concept of DPM
	When there are requests for a device ﬁ the device is busy; otherwise it is idle.
	When the device is idle, it can be shut down to enter a low-power sleeping state.
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	When the device is idle, it can be shut down to enter a low-power sleeping state.

	The Basic Concept of DPM
	When there are requests for a device ﬁ the device is busy; otherwise it is idle.
	When the device is idle, it can be shut down to enter a low-power sleeping state.
	Changing the power state takes time and extra energy.
	Tsd : shutdown delay
	Twu : wake-up delay
	Send the device to sleep only if the saved energy justifies the overhead!

	The Basic Concept of DPM
	When there are requests for a device ﬁ the device is busy; otherwise it is idle.
	When the device is idle, it can be shut down to enter a low-power sleeping state.
	The main Problems:
	Don’t shut down such that delays occur too frequently.
	Don’t shut down such that the savings due to the sleeping are smaller than the energy overhead of the state changes.

	Power Management Policies
	When there are requests for a device ﬁ the device is busy; otherwise it is idle.
	When the device is idle, it can be shut down to enter a low-power sleeping state.
	Power management policies are concerned with predictions of idle periods:
	For shut-down: try to predict how long the idle period will be in order to decide if a shut-down should be performed.
	For wake-up: try to predict when the idle period ends, in order to avoid user delays due to Twu. - Very difficult!

	Dynamic Power Management (DPM)
	For many embedded systems DPM techniques, like presented before, are not appropriate:
	They have time constraints ﬁ we have to keep deadlines (usually we cannot afford shut-down and wake-up times).
	The OS is simple&fast ﬁ no sophisticated run-time techniques.
	The application is known at design time ﬁ we know a lot about the application and optimize already at design time.

	Mapping for Low Energy
	Mapping for Low Energy
	Mapping for Low Energy
	Mapping for Low Energy
	Execution time: 52; Energy consumed: 75

	Mapping for Low Energy
	Mapping for Low Energy
	Execution time: 57; Energy consumed: 70

	Mapping for Low Energy
	The second mapping with t8 on mp4 consumes less energy;
	Assume that we have a maximum allowed delay = 60.
	This second mapping is preferable, even if it is slower!

	Real-Time Scheduling with Dynamic Voltage Scaling
	The energy consumed by a task, due to switching power:

	Real-Time Scheduling with Dynamic Voltage Scaling
	The energy consumed by a task, due to switching power:
	Reducing supply voltage VDD is the efficient way to reduce energy consumption.
	The frequency at which the processor can be operated depends on VDD:

	Real-Time Scheduling with Dynamic Voltage Scaling
	The energy consumed by a task, due to switching power:
	Reducing supply voltage VDD is the efficient way to reduce energy consumption.
	The frequency at which the processor can be operated depends on VDD:
	The execution time of the task:

	Real-Time Scheduling with Dynamic Voltage Scaling
	The (classical) scheduling problem:
	Which task to execute at a certain moment on a certain processor so that time constraints are fulfilled?

	Real-Time Scheduling with Dynamic Voltage Scaling
	The (classical) scheduling problem:
	Which task to execute at a certain moment on a certain processor so that time constraints are fulfilled?
	The scheduling problem with voltage scaling:

	Which task to execute at a certain moment on a certain processor, and at which voltage level, so that time constraints are fulfilled and energy consumption is minimised?

	Real-Time Scheduling with Dynamic Voltage Scaling
	The (classical) scheduling problem:
	Which task to execute at a certain moment on a certain processor so that time constraints are fulfilled?
	The scheduling problem with voltage scaling:

	Which task to execute at a certain moment on a certain processor, and at which voltage level, so that time constraints are fulfilled and energy consumption is minimised?
	The problem: reducing supply voltage extends execution time!

	RISC core
	RAM
	Control Logic
	High-Speed DSP Blocks
	Programmable processor
	ASIC block (Application Specific Integrated Circuit)
	Standard block
	Memory
	Reconfigurable logic (FPGA)
	dedicated electronics
	A/D & D/A
	Interface
	Sensors
	Actuators
	Gateway
	Gateway
	CPU
	RAM
	FLASH
	Input/Output
	Network Interface
	In order to achieve these requirements, systems have to be highly optimized.
	In order to achieve these requirements, systems have to be highly optimized.
	Both hardware and software aspects have to be considered simultaneously!
	T1
	T8
	T5
	T7
	T3
	T6
	T4
	T2
	The system to be implemented is modelled as a task graph:
	a node represents a task (a unit of functionality activated as response to a certain input and which generates a certain output).
	an edge represents a precedence constraint and data dependency between two tasks.

	Period: 42 time units
	The task graph is activated every 42 time units ﬁ an activation has to terminate in time less than 42.

	Cost limit: 8
	The total cost of the implemented system has to be less than 8.
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	1. Start from some informal specification of functionality and a set of constraints.
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	OK
	not OK
	Traditional Design Flow
	1. Start from some informal specification of functionality and a set of constraints.
	2. Generate a more formal model of the functionality, based on some modeling concept.
	Such model is our task graph.
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	Traditional Design Flow
	1. Start from some informal specification of functionality and a set of constraints.
	2. Generate a more formal model of the functionality, based on some modeling concept.
	Such model is our task graph.
	3. Simulate the model in order to check the functionality. If needed make adjustments.
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	not OK
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	2. Generate a more formal model of the functionality, based on some modeling concept.
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	4. Choose an architecture (mprocessor, buses, etc.) such that cost limits are satisfied and, you hope, time and power constraints are fulfilled.
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	5. Build a prototype and implement the system.
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	1. Start from some informal specification of functionality and a set of constraints.
	2. Generate a more formal model of the functionality, based on some modeling concept.
	Such model is our task graph.
	3. Simulate the model in order to check the functionality. If needed make adjustments.
	4. Choose an architecture (mprocessor, buses, etc.) such that cost limits are satisfied and, you hope, time and power constraints are fulfilled.
	5. Build a prototype and implement the system.
	6. Verify the system: neither time nor power constraints are satisfied!!!
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	The Traditional Design Flow
	The consequences:
	Delays in the design process
	- Increased design cost
	- Delays in time to market ﬁ missed market window
	High cost of failed prototypes
	Bad design decisions taken under time pressure
	- Low quality, high cost products
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	Traditional Design Flow
	Now you are in great trouble: you have spent a lot of time and money and nothing works!
	Go back to 4, choose a new architecture and start a new implementation.
	Or negotiate with the customer on the constraints.
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	We have the system model (task graph) which has been validated by simulation.
	We decide on a certain mprocessor mp1, with cost 6.
	For each task the worst case execution time (WCET) when run on mp1 is estimated.
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	We look after a mprocessor which is fast enough: mp2
	For each task the WCET, when run on mp2, is estimated.
	Using the architecture with mprocessor mp2 we got a solution with:
	Execution time: 28 < 42
	Cost: 15 > 8

	We have to try with another architecture!
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	We have to look for a multiprocessor solution
	In order to meet cost constraints try 2 cheap (and slow) mps:
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	We have to look for a multiprocessor solution
	In order to meet cost constraints try 2 cheap (and slow) mps:

	mp3: cost 3 mp4: cost 2 interconnection bus: cost 1
	For each task the WCET, when run on mp3 and mp4, is estimated.
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	Now we have to map the tasks to processors:
	mp3: T1, T3, T5, T6, T7, T8.
	mp4: T2, T4.
	If communicating tasks are mapped to different processors, they have to communicate over the bus.
	Communication time has to be estimated; it depends on the amount of bits transferred between the tasks and on the speed of the bus. Estimated communication times:
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	The execution time is still 62, as before!
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	Cost of ASIC: 1
	Mapping

	mp3: T1, T3, T6, T7.
	mp4: T2, T4, T5.
	ASIC: T8 with estimated WCET= 3
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	Cost: 7 < 8

	T1
	38
	40
	42
	44
	46
	48
	50
	52
	54
	56
	58
	60
	62
	0
	2
	4
	6
	8
	10
	12
	14
	16
	18
	20
	22
	24
	26
	30
	32
	34
	28
	36
	Time
	64
	T3
	38
	Mapping

	mp3: T1, T3, T6, T7.
	mp4: T2, T4, T5.
	ASIC: T8 with estimated WCET= 3
	New communication, with estimated time:

	C7-8: 1
	40
	42
	44
	46
	48
	50
	52
	54
	56
	58
	60
	62
	0
	2
	4
	6
	8
	10
	12
	14
	16
	18
	20
	22
	24
	26
	30
	32
	34
	28
	36
	Time
	64
	T3
	T4
	T6
	T7
	T8
	mp3
	mp4
	bus
	T2
	T5
	C1-2
	C5-7
	C3-5
	C4-8
	C7-8
	ASIC
	T4
	T6
	T7
	T8
	mp3
	mp4
	bus
	T2
	T5
	C1-2
	C5-7
	C3-5
	C4-8
	C7-8
	ASIC
	System model
	Hardware and Software Implementation
	Prototype
	Fabrication
	Informal Specification, Constraints
	Functional Simulation
	Modeling
	Testing
	Arch. Selection
	System architecture
	Mapping
	Estimation
	Mapped and scheduled model
	Scheduling
	OK
	not OK
	not OK
	OK
	not OK
	What is the essential difference compared to the “traditional” design flow?
	Functional Simulation
	System model
	Hardware and Software Implementation
	Prototype
	Fabrication
	Informal Specification, Constraints
	Modeling
	Testing
	Arch. Selection
	System architecture
	Mapping
	Estimation
	Mapped and scheduled model
	Scheduling
	OK
	not OK
	not OK
	OK
	not OK
	What is the essential difference compared to the “traditional” design flow?
	The inner loop which is performed before the hardware/ software implementation.

	This loop is performed several times as part of the design space exploration. Different architectures, mappings and schedules are explored, before the actual implementation and prototyping.
	We get highly optimized good quality solutions in short time. We have a good chance that the outer loop, including prototyping, is not repeated.
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	Decisions:
	Switching among multiple power states:
	idle
	sleep
	run
	Switching among multiple frequencies and voltage levels.


	Goal:
	Energy optimization
	QoS constraints satisfied

	IDLE
	SLEEP
	RUN
	90ms
	40mW
	160mW
	10ms
	10ms
	140ms
	1.5ms
	RUN: operational
	IDLE: Clocks to the CPU are disabled; recovery is through interrupt.
	SLEEP: Mainly powered off; recovery through wake-up event.
	Other intermediate states: DEEP IDLE, STANDBY, DEEP SLEEP

	RUN
	RUN
	RUN
	RUN
	IDLE
	SLEEP
	RUN
	0.75V, 60mW 150MHz
	1.3V, 450mW 600MHz
	1.6V, 900mW 800MHz
	90ms
	40mW
	160mW
	10ms
	10ms
	140ms
	1.5ms
	160ms
	RUN: operational
	IDLE: Clocks to the CPU are disabled; recovery is through interrupt.
	SLEEP: Mainly powered off; recovery through wake-up event.
	Other intermediate states: DEEP IDLE, STANDBY, DEEP SLEEP

	T1

	From Specifications to Implementations
	Specification: An informal description of basic requirements and properties of a system
	The designer gets a specification as an input and, finally, has to produce an implementation.
	This is usually done as a sequence of refinement steps.

	System Specifications
	A specification captures:
	The basic required behaviour of the system
	- E.g. as a relation between inputs and outputs
	Other (non-functional) requirements
	- time constraints
	- power/energy constraints
	- safety requirements
	- environmental aspects
	- cost, weight, etc.

	System Model
	Starting from the informal specification, as an early step in the design flow, a more formal system model is produced.
	The model is a description of certain aspects/properties of the system. Models are abstract, in the sense that they omit details and concentrate on aspects that are significant for the design process.
	There are several modeling approaches (and modeling languages) used for embedded system design; examples:
	Dataflow Models
	Finite State Machines.

	Dataflow Models
	Systems are specified as directed graphs where:
	nodes represent computations (processes);
	arcs represent totally ordered sequences (streams) of data (tokens).

	Dataflow Models
	Systems are specified as directed graphs where:
	nodes represent computations (processes);
	arcs represent totally ordered sequences (streams) of data (tokens).
	Depending on their particular semantics, several models of computation based on dataflow have been defined:

	Kahn process networks
	Dataflow process networks
	Synchronous dataflow
	- - - - - - -

	Dataflow Models
	Systems are specified as directed graphs where:
	nodes represent computations (processes);
	arcs represent totally ordered sequences (streams) of data (tokens).
	Depending on their particular semantics, several models of computation based on dataflow have been defined:

	Kahn process networks (KPN)
	Dataflow process networks (DPN)
	Synchronous dataflow (SDF)
	- - - - - - -
	Dataflow models are suitable for signal-processing algorithms:

	Code/decode, filter, compression, etc.
	Streams of periodic and regular data samples

	Dataflow Models
	KPN model of encoder for Motion JPEG (M-JPEG) video compression format:

	Dataflow Models
	SDF model of a Modem:

	Finite State Machines
	The system is characterised by explicitly depicting its states as well as the transitions from one state to another.
	One particular state is specified as the initial one
	States and transitions are in a finite number.
	Transitions are triggered by input events.
	Transitions generate outputs.
	FSMs are suitable for modeling control dominated reactive systems (react on inputs with specific outputs)

	Finite State Machines
	Elevator controller
	Input events: {r1, r2, r3}
	ri: request from floor i.
	Outputs: {d2, d1, n, u1, u2}

	di: go down i floors
	ui: go up i floors
	n: stay idle
	States: {S1, S2, S3}

	Si: elevator is at floor i.
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	Communication times and energy:
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	Consider a mapping:
	mp3: t1, t3, t6, t7.
	mp4: t2, t4, t5, t8.
	Communication times and energy:
	C1-2: t = 1; E = 3. C3-5: t = 2; E = 5.
	C7-8: t = 1; E = 3. C5-7: t = 1; E = 3.
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	NSW = number of gate transitions per clock cycle.
	NCY = number of cycles needed for the task.
	, k: circuit dependent constant; Vt: threshold voltage.
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	NCY = number of cycles needed for the task.
	, k: circuit dependent constant; Vt: threshold voltage.
	Depends on VDD!
	NSW = number of gate transitions per clock cycle.
	NCY = number of cycles needed for the task.

	Variable Voltage Processors
	Variable Voltage Processors
	Several supply voltage levels are available.
	Supply voltage can be changed during run-time.
	Frequency is adjusted to the current supply voltage.

	The Basic Principle
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	total computation: 109 execution cycles.
	deadline: 25 seconds.
	processor nominal (maximum) voltage: 5V.
	energy: 40 nJ/cycle at nominal voltage.
	processor speed: 50MHz (50¥106 cycles/sec) at nominal voltage.
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	Let’s try a different solution!
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	Considering Task Particularities
	Energy consumed by a task:
	Average energy consumed by task per cycle:
	Often tasks differ from each other in terms of executed operations ﬁ NSW and C differ from one task to the other.
	The average energy consumed per cycle differs from task to task.

	Conclusions
	Embedded systems are everywhere.
	They have to satisfy strong timing, safety, power, and cost constraints.
	An efficient design flow, with iterations at the system level, is needed in order to support the design of complex embedded systems.
	System level design steps are performed before the start of the actual implementation of hardware and software components!
	The input to the actual design flow is an abstract model of the system.
	Power consumption becomes a central issue of the design process.
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	If a processor uses a single supply voltage and completes a program just on deadline, the energy consumption is minimised.
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	NSW = number of gate transitions per clock cycle.
	C = switched capacitance per clock cycle.

	Considering Task Particularities
	If power consumption per cycle differs from task to task the “basic principle” is not longer true! Voltage levels have to be reduced with priority for those tasks which have a larger energy consumption per cycle.
	One individual voltage level has to be established for each task, so that deadlines are just satisfied.




