
Parallel Computer

Architecture Concepts

TDDE35 Lecture 1

Christoph Kessler

PELAB / IDA
Linköping university

Sweden

2024

2

Outline

Lecture 1: Parallel Computer Architecture Concepts

▪ Parallel computer, multiprocessor, multicomputer

▪ SIMD vs. MIMD execution

▪ Shared memory vs. Distributed memory architecture

▪ Interconnection networks

▪ Parallel architecture design concepts

▪ Instruction-level parallelism

▪ Hardware multithreading

▪ Multi-core and many-core

▪ Accelerators and heterogeneous systems

▪ Clusters

▪ Implications for programming and algorithm design

3

Traditional Use of Parallel Computing:

Large-Scale HPC Applications

NSC Tetralith

▪ High Performance Computing (HPC)

▪ E.g. climate simulations, particle physics, proteine docking, …

▪ Much computational work
(in FLOPs, floatingpoint operations)

▪ Often, large data sets

▪ Single-CPU computers and even today’s
multicore processors cannot provide such
massive computation power

▪ Aggregate LOTS of computers → Clusters

▪ Need scalable parallel algorithms

▪ Need exploit multiple levels of parallelism

▪ Cost of communication, memory access

4

High Performance Computing

Application Areas (Selection)

▪ Computational Fluid Dynamics

▪ Weather Forecasting and Climate Simulation

▪ Aerodynamics / Air Flow Simulations and Optimization

▪ Structural Engineering

▪ Fuel-Efficient Aircraft Design

▪ Molecular Modelling

▪ Material Science

▪ Computational Chemistry

▪ Battery Simulation and Optimization

▪ Galaxy Simulations

▪ Earthquake Engineering, Oil Reservoir Simulation

▪ Flood Prediction

▪ Bioinformatics (DNA Pattern Matching, Proteine Docking)

▪ Fluid / Structural Interaction

▪ Blood Flow Simulation

▪ fRMI Image Analysis

▪ ...

www.e-science.se

5

Example: Weather Forecast

cell

• Air pressure

• Temperature

• Humidity

• Sun radiation

• Wind direction

• Wind velocity

• …

(very simplified…)

• 3D Space discretization (cells)

• Time discretization (steps)

• Start from current observations

(sent from weather stations etc.)

• Simulation step by evaluating

weather model equations

E.g., cell size 1km3 and

10min time discretization

→ 10-day simulation: 1015 FLOPs

SMHI: 4 forecasts per day,

50 variants (simulations) per forecast

https://www.smhi.se/kunskapsbanken/meteorologi/sa-gor-smhi-en-vaderprognos-1.4662

6

Another Classical Use of Parallel Computing:

Parallel Embedded Computing

NSC Tetralith

▪ High-performance embedded computing

▪ E.g. on-board realtime image/video processing, gaming, …

▪ Much computational work
(often fixed point operations)

▪ Often, in energy-constrained mobile devices

▪ Sequential programs on single-core computers
cannot provide sufficient computation power
at a reasonable power budget

▪ Use many small cores at low frequency

▪ Need scalable parallel algorithms

▪ Cost of communication, memory access

▪ Energy cost (Power x Time)

7

More Recent Use of Parallel Computing:

Big-Data Analytics Applications

▪ Big Data Analytics

▪ Data access intensive (disk I/O, memory accesses)

▪ Typically, very large data sets (GB … TB … PB … EB …)

▪ Also some computational work for combining/aggregating data

▪ E.g. data center applications, business analytics, click stream
analysis, scientific data analysis, machine learning, …

▪ Soft real-time requirements on interactive querys

▪ Single-CPU and multicore processors cannot
provide such massive computation power
and I/O bandwidth+capacity

▪ Aggregate LOTS of computers → Clusters

▪ Need scalable parallel algorithms

▪ Need to exploit multiple levels of parallelism

▪ Fault tolerance
NSC Tetralith

8

HPC vs Big-Data Computing

▪ Both need parallel computing

▪ Same kind of hardware – Clusters of (multicore) servers

▪ Same OS family (Linux)

▪ Different programming models, languages, and tools

HW: Cluster

OS: Linux

Par. programming models:

MPI, OpenMP, …

HW: Cluster

OS: Linux

Par. programming models:

MapReduce, Spark, …

HPC prog. languages:

Fortran, C/C++ (Python)
Big-Data prog. languages:

Java, Scala, Python, …

→ Let us start with the common basis: Parallel computer architecture

Big-data storage/access:

HDFS, …

Scientific computing

libraries: BLAS, …

HPC application Big-Data application

More in
 TDDE31

master-le
vel course on

Big-Data Analytic
s

9

Parallel Computer

10

Parallel Computer Architecture Concepts

Classification of parallel computer architectures:

▪ by control structure

▪ by memory organization

▪ in particular, Distributed memory vs. Shared memory

▪ by interconnection network topology

11

Classification by Control Structure

…

vop

op op op op
1 2 3 4

op

12

Classification by Memory Organization

Most common today in HPC and Data centers:

Hybrid Memory System
• Cluster (distributed memory)

of hundreds, thousands of

shared-memory servers

each containing one or several multi-core CPUs

NSC Triolith

e.g. (traditional) HPC cluster e.g. multiprocessor (SMP) or computer

with a standard multicore CPU

NSC Tetralith

(DMS) (SMS)

13

Hybrid (Distributed + Shared) Memory

M M

SC Tetralith

14

Interconnection Networks (1)

▪ Network
= physical interconnection medium (wires, switches)
+ communication protocol

(a) connecting cluster nodes with each other (DMS)

(b) connecting processors with memory modules (SMS)

Classification

▪ Direct / static interconnection networks

▪ connecting nodes directly to each other

▪ Hardware routers (communication coprocessors)
can be used to offload processors from
most communication work

▪ Switched / dynamic interconnection networks

▪ Graphs of routers (switches) connecting the nodes

P R

P P

P

R

15

Interconnection Networks (2):

Simple Topologies P

P

P
P

P

Pfully connected

16

Interconnection Networks (3):

Fat-Tree Network

▪ Tree network extended for higher bandwidth (more switches,

more links) closer to the root

▪ Higher cost, but reduces bandwidth bottleneck

▪ Example: Infiniband network →

(www.mellanox.com)

Root of logical tree

Example implementation (SGI):

Logically a 4-ary tree,

physically a butterfly-like network

17

More about Interconnection Networks

▪ Hypercube, Crossbar, Butterfly, Hybrid networks… → TDDE65

▪ Switching and routing algorithms

▪ Discussion of interconnection network properties

▪ Cost (#switches, #lines)

▪ Scalability

(asymptotically, cost grows not much faster than #nodes)

▪ Node degree

▪ Longest path (→ latency)

▪ Accumulated bandwidth

▪ Fault tolerance (worst-case impact of node or switch failure)

▪ …

18

Instruction Level Parallelism (1):

Pipelined Execution in the ALU

19

SIMD Computing

with Pipelined Vector Units

Used in early supercomputers:

vector supercomputers by

Cray (1970s, 1980s), Fujitsu, …

Today, automatically pipelined

execution also of different

instructions is standard in CPUs

20

Instruction-Level Parallelism (2):

VLIW and Superscalar

▪ Multiple functional units in parallel

▪ Try to run more than 1 instruction per cc

▪ 2 main paradigms:

▪ VLIW (very large instruction word) architecture ^

▪ Parallelism is explicit, programmer-/compiler-managed (hard)

▪ Energy-efficient

▪ Popular in digital signal processors

▪ Superscalar architecture →

▪ Sequential instruction stream

▪ Hardware-managed dispatch

▪ power + area overhead

▪ ILP in applications is usually limited (= the ”ILP wall”)

▪ typ. < 3...4 instructions can be issued simultaneously

▪ Due to control and data dependences in applications

▪ Larger issue widths give at best marginal gains

▪ Solution: Multithread the application and the processor

21

Hardware Multithreading

PP P P

E.g.,

data

dependence

22

Background:

Hardware multithreading vs. multicore
▪ Multicore = multiple separate processors placed on a single chip,

▪ operating truly in parallel

▪ sharing last-level cache and off-chip memory access interface (the “un-core”).

▪ Hardware multithreading
▪ a single processor (e.g., a core) automatically emulates multiple virtual processors

(the hardware threads) by timesharing its data path (e.g., functional units)
▪ Hardware threads are managed entirely by the processor’s hardware

(not by the OS – the OS has no influence on it).
▪ Each piece of hardware (e.g., the floatingpoint unit of the processor) can only be

used by one of the hardware threads at a time.
▪ Hardware threads co-exist only by their different register sets.

The hardware switches context by switching from one register set to the next one.
▪ Coarse-grain HW multithreading: processor hardware context-switches on cache

misses or other long-latency operations to the next hardware thread
▪ Fine-grain HW multithreading: processor hardware context-switches after every

clock-cycle (round-robbin hardware scheduling)
▪ Simultaneous multithreading / hyperthreading: the HW scheduler can start

execution of multiple instructions (on disjoint sub-datapaths) coming from
different HW threads (thus, independent) in the same clock cycle.

23

Background:

Hardware multithreading vs. multicore
(cont.)

▪ Hardware multithreading only gives additional speedup if long-latency
 instructions (e.g. cache-missing loads) of different threads can overlap
 in time with instructions from other hardware threads, by continuing
 running in the (hardware) background after a hardware context switch.
 This is used excessively in today’s GPUs, to hide the high memory latency.

▪ In both cases (multicore, hardware multithreading)
 the OS sees multiple processors sharing memory.

▪ Of course, both concepts can be combined: Today's CPUs have
 multiple cores, each of which is hardware-multithreaded.

▪ Caution: Hardware multithreading has nothing to do with
 software threads (created/managed by OS) or the OS CPU scheduler!
 Software threads and hardware threads are orthogonal concepts –
 each hardware thread can be time-shared among multiple
 software threads by the OS’s software context switch and scheduler.

24

SIMD Instructions

in modern CPUs

▪ Recall:
SIMD = “Single Instruction stream,
 Multiple Data streams”
▪ single thread of control flow
▪ restricted form of data parallelism

▪ apply the same primitive operation (a single instruction)
in parallel to multiple data elements stored contiguously

▪ Arithmetic-logical units of CPUs:
datapath width is at least the width of widest built-in data type
(e.g. long double, 128bit)

▪ SIMD-enabled arithmetic-logical units
▪ use long “vector registers”

▪ each holding multiple data elements of shorter data types
▪ Common today

▪ MMX, SSE, SSE2, SSE3, Altivec, VMX, Neon, …
▪ Performance boost for operations on shorter data types
▪ Area- and energy-efficient
▪ Code to be rewritten (SIMDized) by programmer or compiler
▪ Does not help (much) for memory bandwidth

SIMD unitop

”vector register”

25

The Memory Wall

▪ Performance gap CPU – Memory

▪ Memory hierarchy

▪ Increasing cache sizes shows diminishing returns

▪ Costs power and chip area

▪ GPUs spend the area instead on many simple cores with little memory

▪ Relies on good data locality in the application

▪ What if there is no / little data locality?

▪ Irregular applications,
e.g. sorting, searching, optimization...

▪ Solution: Spread out / overlap memory access delay

▪ Programmer/Compiler: Prefetching, on-chip pipelining,
SW-managed on-chip buffers

▪ Generally: Hardware multithreading, again!

26

Moore’s Law

▪ Prediction (1965/1975):
The number of transistors
per mm2 chip area
doubles approximately
every 2 years
[at about equal production cost]

▪ Exponential increase due to
miniaturization in semiconductors

→ A self-fulfilling prophecy
 through 50 years!

→ Some slowdown since 2014:
still exponential growth of transistor
density (albeit at lower pace)

→ Soon running into physical and
economical limits

Image source: By Wgsimon -

Own work, CC BY-SA 3.0,

https://commons.wikimedia.org

/w/index.php?curid=15193542

Image source: Intel

Gordon Moore

(1929-2023),

co-founder of

Intel

Gordon Moore (April 19, 1965). "Cramming More Components

onto Integrated Circuits". Electronics Magazine. 38 (8): 114–117.

27

CPU Performance Development since 1970

Adapted for trend in number of cores.

Transition to Multicore CPUs
Clock frequency flattening out;

Single-thread performance

 flattening out;

~2005

www.karlrupp.net, CC 4.0

Moore’s

Law

28

The Power Issue

▪ Power = Static (leakage) power + Dynamic (switching) power

▪ Dynamic power ~ Voltage2 * Clock frequency

where Clock frequency approx. ~ voltage

→ Dynamic power ~ Frequency3

▪ Total power ~ #processors

29

Moore’s Law vs. Clock Frequency

• #Transistors / mm2 still

growing exponentially

according to Moore’s Law
(but with slightly lower slope

since ~2014)

• Clock speed hitting thermal

limits of air-cooled CMOS
~2003,

due to end of Dennard Scaling

• #Transistors / mm2 still

growing exponentially

according to Moore’s Law
(but with slightly lower slope

since ~2014)

• Clock speed hitting thermal

limits of air-cooled CMOS
~2003,

due to end of Dennard Scaling
2003

End of

Dennard

Scaling

~3GHz

More transistors + Limited frequency

 More cores

MULTI-CORE ERA

Clock

frequency

Transistor

density

20141975

Dennard scaling: With increasing

transistor density, can still increase

the clock frequency and yet keep

power density at about same level

30

Solution for CPU Design:

Multicore + Multithreading

▪ Single-thread performance does not improve any more
since ca. 2003

▪ ILP wall

▪ Memory wall

▪ Power wall (end of “Dennard Scaling”)

▪ but thanks to Moore’s Law continuing,
we could still put more cores on a chip

▪ And hardware-multithread the cores
to hide (some) memory latency

▪ All major chip manufacturers produce multicore CPUs today

31

Main features of a multicore system

▪ A parallel computer

▪ There are multiple computational cores on the same CPU chip.

▪ Homogeneous multicore (same core type)

▪ Heterogeneous multicore (different core types)

▪ The cores might have (small) private on-chip memory modules

and/or access to on-chip memory shared by several cores.

▪ The cores have access to a common off-chip main memory

▪ There is a way by which these cores communicate with each

other and/or with the environment.

32

Standard CPU Multicore Designs

▪ Standard desktop/server CPUs have a few ... up to ~32 cores

with shared off-chip main memory

▪ On-chip cache (typ., 3 levels)

▪ L1-cache mostly core-private

▪ L2-cache often shared by

groups of cores, L3 often by all

▪ Memory access interface shared by all or groups of cores

▪ Caching → multiple copies of the same data item

▪ Writing to one copy (only) causes inconsistency

▪ Shared memory coherence mechanism to enforce automatic

updating or invalidation of all copies around

→ More about shared-memory architecture, caches, data locality,

consistency issues and coherence protocols in TDDE65/TDDD56

core core corecore

L1$ L1$ L1$ L1$

L2$ L2$

L3 /

Interconnect / Memory interface

main memory (DRAM)

33

Some early dual-core CPUs (2004/2005)

P0 P1

L1$ D1$ L1$ D1$

L2$

Memory Ctrl

Main memory

L2$

AMD Opteron

Dualcore (2005)

P0 P1

L1$ D1$ L1$

L2$

Memory Ctrl

IBM Power5

(2004)

Main memory

P0 P1

L1$ D1$ L1$ D1$

L2$

Memory Ctrl

Intel Xeon

Dualcore(2005)

Main memory

SMT

D1$

$ = ”cache”

L1$ = ”level-1 instruction cache”

D1$ = ”level-1 data cache”

L2$ = ”level-2 cache” (uniform)

34

SUN/Oracle SPARC T Niagara (8 cores)

P6 P7

L1$ D1$ L1$ D1$

L2$

Memory Ctrl

Niagara T1 (2005):

8 cores, 32 HW threads

Main memory

P4 P5

L1$ D1$ L1$ D1$

P2 P3

L1$ D1$ L1$ D1$

P0 P1

L1$ D1$ L1$ D1$

Memory Ctrl Memory Ctrl Memory Ctrl

Main memory Main memory Main memory

Sun UltraSPARC ”Niagara”

Niagara T1 (2005):

8 cores, 32 HW threads

Niagara T2 (2008):

8 cores, 64 HW threads

Niagara T3 (2010):

16 cores, 128 HW threads

T5 (2012):

16 cores, 128 HW threads

35

SUN / Oracle SPARC-T5 (2012)

28nm process, 16 cores x 8 HW threads, L3 cache on-chip,

On-die accelerators for common encryption algorithms

36

Scaling Up: Network-On-Chip

▪ Cache-coherent shared memory (hardware-controlled) –
does not scale well to many cores

▪ power- and area-hungry

▪ signal latency across whole chip

▪ not well predictable access times

▪ Idea: NCC-NUMA – non-cache-coherent, non-uniform memory
access

▪ Physically distributed on-chip [cache] memory,

▪ on-chip network, connecting PEs or coherent ”tiles” of PEs

▪ global shared address space,

▪ but software responsible
for maintaining coherence

▪ Examples:

▪ STI Cell/B.E.,

▪ Tilera TILE64,

▪ Intel SCC, Kalray MPPA

38

Towards Many-Core CPUs...

▪ For low-power, throughput-oriented computing

▪ Many (today: >100) but small (energy-efficient) CPU cores on

the chip

▪ No longer fully cache coherent

over the entire chip

▪ MPI-like message passing

over 2D mesh network on chip

Source: Intel

39

▪ Tilera TILE64 (2007): 64 cores, 8x8 2D-mesh on-chip network

Towards Many-Core Architectures

1 tile: VLIW-processor

+ cache + router

P C

R

(Image simplified)

Mem-controller

I/O I/O

40

Clustered Many-core CPU:

Kalray MPPA-256

▪ 16 tiles

with 16 VLIW compute cores each

plus 1 control core per tile

▪ Message passing network on chip

▪ Virtually unlimited array extension

by clustering several chips

▪ First version ca. 2012

▪ 28 nm CMOS technology

▪ Low power dissipation, typ. 5 W Image source:

Kalray

42

”General-purpose” GPUs

• Example:
High-end NVIDIA GPUs (e.g. A100)
have ~5000 CUDA cores

• Each CUDA core has a
• Floating point / integer unit

• Logic unit

• Move, compare unit

• Branch unit

• Cores managed by thread manager
• Hardware scheduler, can manage 100,000+ threads

• Zero overhead thread switching

Source: NVidia

Nvidia Tesla C1060:

933 Gflops (~2009)

(Images removed)

43

Nvidia Fermi (2010): 512 cores
1 ”shared-memory

multiprocessor” (SM)1 Fermi C2050 GPU

SM

L2

I-cache

Scheduler

Dispatch

Register file

32 Streaming

processors

(cores)

Load/Store units

Special function units

64K configurable L1cache/

shared memory

1 Streaming

Processor

(SP)

FPU IntU

44

GPU Architecture Paradigm

▪ Optimized for high throughput

▪ In theory, ~10x to ~100x higher throughput than CPU is

possible

▪ Massive hardware-multithreading hides memory access latency

▪ Massive parallelism

▪ GPUs are good at data-parallel computations

▪ multiple threads executing the same instruction on different

data, preferably located adjacently in memory

45

The future will be heterogeneous!

Need 2 kinds of cores – often on same chip:

▪ For non-parallelizable code:
Parallelism only from running several serial applications
simultaneously on different cores
(e.g. on desktop: word processor, email, virus scanner, …

… not much more)

→ Few (ca. 4-8) ”fat” cores – designed for low latency
(power-hungry, area-costly,
large caches, out-of-order issue / speculation)
for high single-thread performance

▪ For well-parallelizable code:
→ hundreds of simple cores –

designed for high throughput
at low power consumption

(power + area efficient)
(GPU-/SCC-like)

46

Heterogeneous / Hybrid Multi-/Manycore

Key concept: Master-worker parallelism, offloading

▪ General-purpose CPU (master) processor controls execution

of worker processors by submitting tasks to them and

transfering operand data to the workers’ local memory

→Master offloads computation to the slaves

▪ Workers often optimized for heavy throughput computing

▪ Master could do something else while waiting for the result,

or switch to a power-saving mode

▪ Master and worker cores might reside

on the same chip (e.g., Cell/B.E.)

or on different chips (e.g., systems with GPU graphics cards)

▪ Workers might have access to off-chip main memory (e.g.,

Cell) or not (e.g., most GPUs)

47

Heterogeneous / Hybrid Multi-/Manycore Systems

▪ Cell/B.E.

▪ GPU-based system:

CPU

GPU

Offload

heavy

computation

Data

transfer

Device

memory

Main

memory

48

Multi-GPU Systems

▪ Connect one or few general-purpose (CPU) multicore

processors with shared off-chip memory to several GPUs

▪ Increasingly popular in high-performance computing, DNN

▪ Cost and (quite) energy effective if offloaded computation

fits GPU architecture well

Main Memory

(DRAM)

49

Reconfigurable Computing Units

▪ FPGA – Field Programmable Gate Array

"Altera StratixIVGX FPGA" by Altera Corp.
Licensed under CC BY 3.0 via Wikimedia Commons

50

Example: Beowulf-class PC Clusters

with off-the-shelf CPUs

(Xeon, Opteron, …)

51

Example: Tetralith (NSC, 2018/2019)

• Each Tetralith compute node has

2 Intel Xeon Gold 6130 CPUs (2.1 GHz)

each with 16 cores (32 hardware threads)

• 1832 "thin" nodes with 96 GiB of primary

memory (RAM)

• and 60 "fat" nodes with 384 GiB.

→ 1892 nodes, 60544 cores in total

All nodes are interconnected with a 100 Gbps

Intel Omni-Path network (Fat-Tree topology)

52

The Challenge

▪ Today, basically all computers are parallel computers!

▪ Single-thread performance stagnating

▪ Dozens of cores and hundreds of HW threads available per server

▪ May even be heterogeneous (core types, accelerators)

▪ Data locality matters

▪ Large clusters for HPC and Data centers, require message passing

▪ Utilizing more than one CPU core requires thread-level parallelism

▪ One of the biggest software challenges: Exploiting parallelism

▪ Need LOTS of (mostly, independent) tasks to keep cores/HW threads
busy and overlap waiting times (cache misses, I/O accesses)

▪ All application areas, not only traditional HPC

▪ General-purpose, data mining, graphics, games, embedded, DSP, …

▪ Affects HW/SW system architecture, programming languages,
algorithms, data structures …

▪ Parallel programming is more error-prone
(deadlocks, races, further sources of inefficiencies)

▪ And thus more expensive and time-consuming

53

Can’t the compiler fix it for us?

▪ Automatic parallelization?

▪ at compile time:

▪ Requires static analysis – not effective for pointer-based

languages

▪ needs programmer hints / rewriting ...

▪ ok for few benign special cases:

▪ (Fortran) loop SIMDization,

▪ extraction of instruction-level parallelism, …

▪ at run time (e.g. speculative multithreading)

▪ High overheads, not scalable

▪ More about parallelizing compilers in TDDD56 + TDDE65

54

And worse yet,

▪ A lot of variations/choices in hardware

▪ Many will have performance implications

▪ No standard parallel programming model

▪ portability issue

▪ Understanding the hardware will make it easier to make

programs get high performance

▪ Performance-aware programming gets more important

also for single-threaded code

▪ Adaptation leads to portability issue again

▪ How to write future-proof parallel programs?

55

Bread-and-Butter Programming is Not

Sufficient for High-Performance Computing

▪ Resource-Aware Programming can give orders of magnitude in speedup

▪ Exploit multiple levels of parallelism and optimizations

Table source: Turing award lecture by J. Hennessy and D. Patterson, 2018. See also:

J. Hennessy, D. Patterson: A New Golden Age for Computer Architecture.

Communications of the ACM 62(2):48-60, Feb. 2019.

Version Speedup Optimization

Python 1

C 47 Rewrite in a static, compiled

(“native”) progr. language

C with parallel loops 366 Extract multi-core parallelism

(OpenMP)

C with loops and memory optimization 6,727 Loop tiling for data locality

Loop vectorization using Intel AVX

SIMD instructions

62,806 Extract SIMD parallelism

Example:

Matrix-Multiply: relative speedup to a Python version (18 core Intel Xeon CPU)

56

What we had learned so far …

▪ Sequential von-Neumann model

programming, algorithms, data structures, complexity

▪ Sequential / few-threaded languages: C/C++, Java, ...

not designed for exploiting massive parallelism

time

problem size

T(n) = O (n log n)

57

… and what we need now

▪ Parallel programming!

▪ Parallel algorithms and data structures

▪ Analysis / cost model: parallel time, work, cost; scalability;

▪ Performance-awareness: data locality, load balancing, communication

time

problem size

number of

processing

units used

T(n,p) = O ((n log n)/p + log p)

Questions?

59

Homework

▪ Explain the difference between software multithreading
 and hardware multithreading.

▪ Explain the difference between hardware multithreading
 and multicore.

▪ For your own computer / smartphone, find out which CPU it has,
 with how many cores and hardware threads.

	Slide 1: Parallel Computer Architecture Concepts TDDE35 Lecture 1
	Slide 2: Outline
	Slide 3: Traditional Use of Parallel Computing: Large-Scale HPC Applications
	Slide 4: High Performance Computing Application Areas (Selection)
	Slide 5: Example: Weather Forecast
	Slide 6: Another Classical Use of Parallel Computing: Parallel Embedded Computing
	Slide 7: More Recent Use of Parallel Computing: Big-Data Analytics Applications
	Slide 8: HPC vs Big-Data Computing
	Slide 9: Parallel Computer
	Slide 10: Parallel Computer Architecture Concepts
	Slide 11: Classification by Control Structure
	Slide 12: Classification by Memory Organization
	Slide 13: Hybrid (Distributed + Shared) Memory
	Slide 14: Interconnection Networks (1)
	Slide 15: Interconnection Networks (2): Simple Topologies
	Slide 16: Interconnection Networks (3): Fat-Tree Network
	Slide 17: More about Interconnection Networks
	Slide 18: Instruction Level Parallelism (1): Pipelined Execution in the ALU
	Slide 19: SIMD Computing with Pipelined Vector Units
	Slide 20: Instruction-Level Parallelism (2): VLIW and Superscalar
	Slide 21: Hardware Multithreading
	Slide 22: Background: Hardware multithreading vs. multicore
	Slide 23: Background: Hardware multithreading vs. multicore (cont.)
	Slide 24: SIMD Instructions in modern CPUs
	Slide 25: The Memory Wall
	Slide 26: Moore’s Law
	Slide 27: CPU Performance Development since 1970
	Slide 28: The Power Issue
	Slide 29: Moore’s Law vs. Clock Frequency
	Slide 30: Solution for CPU Design: Multicore + Multithreading
	Slide 31: Main features of a multicore system
	Slide 32: Standard CPU Multicore Designs
	Slide 33: Some early dual-core CPUs (2004/2005)
	Slide 34: SUN/Oracle SPARC T Niagara (8 cores)
	Slide 35: SUN / Oracle SPARC-T5 (2012)
	Slide 36: Scaling Up: Network-On-Chip
	Slide 38: Towards Many-Core CPUs...
	Slide 39: Towards Many-Core Architectures
	Slide 40: Clustered Many-core CPU: Kalray MPPA-256
	Slide 42: ”General-purpose” GPUs
	Slide 43: Nvidia Fermi (2010): 512 cores
	Slide 44: GPU Architecture Paradigm
	Slide 45: The future will be heterogeneous!
	Slide 46: Heterogeneous / Hybrid Multi-/Manycore
	Slide 47: Heterogeneous / Hybrid Multi-/Manycore Systems
	Slide 48: Multi-GPU Systems
	Slide 49: Reconfigurable Computing Units
	Slide 50: Example: Beowulf-class PC Clusters
	Slide 51: Example: Tetralith (NSC, 2018/2019)
	Slide 52: The Challenge
	Slide 53: Can’t the compiler fix it for us?
	Slide 54: And worse yet,
	Slide 55: Bread-and-Butter Programming is Not Sufficient for High-Performance Computing
	Slide 56: What we had learned so far …
	Slide 57: … and what we need now
	Slide 58: Questions?
	Slide 59: Homework

