
TDTS04/TDDE35: Distributed Systems

Instructor: Niklas Carlsson

Email: niklas.carlsson@liu.se

Notes derived from “Distributed Systems:
Principles and Paradigms”, by Andrew S.

Tanenbaum and Maarten Van Steen, Pearson Int. Ed.

The slides are adapted and modified based on slides used by other
instructors, including slides used in previous years by Juha
Takkinen, as well as slides used by various colleagues from the
distributed systems and networks research community.

1

mailto:niklas.carlsson@liu.se

Communication in distributed systems

• How do distributed components talk to each other?

• “Distributed” processes located on different machines

• Need communication mechanisms

• Goal: Hide distributed nature as far as possible

2

Communication in distributed systems

• Networking primitives and protocols (e.g., TCP/IP)

• Advanced communication models: Built on
networking primitives

• Messages

• Streams

• Remote Procedure Calls (RPC)

• Remote Method Invocation (RMI)

3

Messages and streams

• We have already seen many protocols
• Connection or connection less

• Reliable vs unreliable

• Different layers

• Addressing

• Push vs pull

• Other aspects
• Structured vs unstructured

• Blocking vs non-blocking

• Buffered vs non-buffered

• Server architecture

• Scalability

• Group communication

• Communication paradigm
4

Example paradigms

5

Publish subscribe
- Many to many

e.g., RSS and messaging

Persistence

Persistent communication

– Messages are stored until (next) receiver is ready

– Examples: email, pony express

Transient Communication

Transient communication

– Message is stored only so long as sending/receiving
application are executing

– Discard message if it can’t be delivered to next
server/receiver

– Examples:

• Transport-level communication services offer transient
communication

• Typical network router – discard message if it can’t be delivered
next router or destination

7

Synchronicity

Asynchronous communication

– Sender continues immediately after it has submitted the
message

– Need a local buffer at the sending host

Synchronous communication

– Sender blocks until message is stored in a local buffer at
the receiving host or actually delivered

– Variant: block until receiver processes the message

Six combinations of persistence and synchronicity
8

Persistence and Synchronicity Combinations

a) Persistent asynchronous communication (e.g., email)

b) Persistent synchronous communication

2-22.1

Persistence and Synchronicity Combinations

c) Transient asynchronous communication (e.g., UDP)

d) Receipt-based transient synchronous communication

2-22.2

Persistence and Synchronicity Combinations

e) Delivery-based transient synchronous communication at message delivery
(e.g., asynchronous RCP)

f) Response-based transient synchronous communication (RPC)

12

Message-oriented Transient
Communication

Many distributed systems built on top of simple message-oriented model

– Example: Berkeley sockets

Stream examples

Single sender and receiver

One sender

Multiple receivers

Single sender and receiver

One sender
Multiple receivers

14

15

Remote procedure calls (RPC)

• Goal: Make distributed computation look like
centralized computation

• Idea: Allow processes to call procedures on
other machines

• Make it appear like normal procedure calls

16

Parameter Passing

Local procedure parameter passing

– Call-by-value

– Call-by-reference: arrays, complex data structures

Remote procedure calls simulate this through:

– Stubs – proxies

– Flattening – marshalling

Related issue: global variables are not allowed in
RPCs

17

RPC operation

• Challenges:

• Hide details of communication

• Pass parameters transparently

• Stubs

• Hide communication details

• Client and server stubs

• Marshalling

• Flattening and parameter passing

18

RPC operation

19

Client code Server code

Client stub Server stub

RPC client RPC server

Stubs

• Code that communicates with the remote side

• Client stub:

• Converts function call to remote communication

• Passes parameters to server machine

• Receives results

• Server stub:

• Receives parameters and request from client

• Calls the desired server function

• Returns results to client
20

Passing value parameters

Figure 4-7. The steps involved in a doing a
remote computation through RPC.

Marshalling

Problem: different machines have different data formats

– Intel: little endian, SPARC: big endian

Solution: use a standard representation

– Example: external data representation (XDR)

Problem: how do we pass pointers?

– If it points to a well-defined data structure, pass a copy and the server stub
passes a pointer to the local copy

What about data structures containing pointers?

– Prohibit

– Chase pointers over network

Marshalling: transform parameters/results into a byte stream

23

Stub generation

• Most stubs are similar in functionality
• Handle communication and marshalling

• Differences are in the main server-client code

• Application needs to know only stub interface

• Interface Definition Language (IDL)
• Allows interface specification

• IDL compiler generates the stubs automatically

24

Writing a Client
and a Server

Figure 4-12. The steps in writing a client and
a server in DCE RPC.

26

Asynchronous RPC

• Basic RPC
• Client blocks until results come back

• What if client wants to do something else?

• What if things fail?

27

Asynchronous RPC

• Basic RPC
• Client blocks until results come back

• Asynchronous RPC
• Server sends ACK as soon as request is received

• Executes procedure later

• Deferred synchronous RPC
• Use two asynchronous RPCs

• Server sends reply via second asynchronous RPC

• One-way RPC
• Client does not even wait for an ACK from the server

28

Tanenbaum & Van
Steen, Distributed

Client and Server Stubs

Figure 4-6. Principle of RPC between a client and
server program.

Asynchronous RPC (2)

Figure 4-10. (b) The interaction using asynchronous
RPC.

Asynchronous RPC (3)

Figure 4-11. A client and server interacting through
two asynchronous RPCs.

32

RPC: Network failure

• Client unable to locate server:

• Return error or raise exception

• Lost requests/replies:

• Timeout mechanisms

• Make operation idempotent (does not
change the results beyond initial operation)

• Use sequence numbers, mark
retransmissions

33

RPC: Server failure

• Server may crash during RPC

• Did failure occur before or after
operation?

• Operation semantics

• Exactly once: desirable but impossible
to achieve

• At least once

• At most once

• No guarantee

34

RPC: Client failure

• Client crashes while server is computing

• Server computation becomes orphan

• Possible actions

• Extermination: log at client stub and
explicitly kill orphans

• Reincarnation: Divide time into epochs
between failures and delete
computations from old epochs

• Expiration: give each RPC a fixed
quantum T; explicitly request extensions

35

36

Remote method invocation (RMI)

• RPCs applied to distributed objects

• Class: object-oriented abstraction

• Object: instance of class

• Encapsulates data

• Export methods: operations on data

• Separation between interface and
implementation

37

Tanenbaum & Van Steen, Distributed Systems: Principles and

Distributed objects

Figure 10-1. Common organization of a remote
object with client-side proxy.

Proxies and skeletons

• Proxy: client stub
• Maintains server ID, endpoint, object ID

• Does parameter marshalling

• In practice, can be downloaded/constructed on the fly

• Skeleton: server stub
• Does demarshalling and passes parameters to server

• Sends result to proxy

40

Binding a client to an object

• Loading a proxy in client address space

• Implicit binding:

• Bound automatically on object
reference resolution

• Explicit binding:

• Client has to first bind object

• Call method after binding

41

Parameter passing
• Less restrictive than RPCs

• Supports system-wide object references

• Pass local objects by value, remote objects by reference

42

Object-based messaging

CORBA’s callback model for
asynchronous method invocation.

CORBA’s polling model for

asynchronous method invocation.

Naming: CORBA Object References

The organization of an IOR ...

45

