
TDTS04/TDDE35: Distributed Systems

Instructor: Niklas Carlsson

Email: niklas.carlsson@liu.se

Notes derived from “Distributed Systems:
Principles and Paradigms”, by Andrew S.

Tanenbaum and Maarten Van Steen, Pearson Int. Ed.

The slides are adapted and modified based on slides used by other
instructors, including slides used in previous years by Juha
Takkinen, as well as slides used by various colleagues from the
distributed systems and networks research community.

1

mailto:niklas.carlsson@liu.se

Example topics in distributed systems

• Communication: How do distributed
components talk to each other?

• Synchronization: How do we get a
consistent view of distributed events?

• Data Sharing: How can distributed
processes access and update the same data?

• Scheduling: How do we distribute
computation over multiple resources?

• Fault Tolerance: How do we overcome
failures of remote components?

• Replica placement and selection: How to
distribute/direct resources and processing? 2

Synchronization

• Agreement over global state among distributed
servers/processes

• Communication:

• Different processes must see messages and
events in a consistent order

• Sharing:

• Shared resources/data should be consistent

• Master/slave relation:

• Many distributed algorithms require a
master server

3

Time synchronization

• Uniprocessors

• Single clock

• All processes see the same time

• Distributed systems

• Different clocks

• Each machine sees different times

4

Clock synchronization

Figure 6-1. When each machine has its own
clock, an event that occurred after another event
may nevertheless be assigned an earlier time.

Synchronization

• Time synchronization

• Physical clocks

• Event ordering

• Logical clocks

6

Clocks and clock drifts

• Clocks are oscillators

• Drift caused by differences in oscillator
frequencies

• Coordinated universal time (UTC)
• International standard based on atomic time

• Broadcast via radio, satellites

7

Clock synchronization

• Each clock has a maximum drift rate
• 1- ≤ dC/dt ≤ 1+

• Two clocks may drift by 2 in time

• To limit drift to , we must therefore resynchronize
every /2 seconds

Physical Clock Synchronization

• Cristian’s Algorithm and
NTP – periodically get
information from a time
server (assumed to be
accurate).

Network
Time
Protocol

S
o
u
rc

e:
 W

ik
ip

ed
ia

Physical Clock Synchronization

• Cristian’s Algorithm and
NTP – periodically get
information from a time
server (assumed to be
accurate).

• Berkeley – active time
server uses polling to
compute average time.
Note that the goal is the
have correct “relative”
time

12

Logical clocks
Observation: It may be sufficient that every node agrees

on a current time – that time need not be ‘real’ time.

Logical clocks
Observation: It may be sufficient that every node agrees

on a current time – that time need not be ‘real’ time.

Logical clocks
Observation: It may be sufficient that every node agrees

on a current time – that time need not be ‘real’ time.

Taking this one step further, in some cases, it is adequate
that two systems simply agree on the order in which
system events occurred.

Event ordering

• Multiple communicating processes running on
different machines

• Events taking place on each process

• Computation

• Data read/write

• Sending/receiving of messages

• In what order are these events happening?

• Can we use clock times of machines?

Logical clocks

• Maintain ordering of distributed events in a
consistent manner

• Main Ideas:

• Idea 1: Non-communicating processes do not need to be
synchronized

• Idea 2: Agreement on ordering is more important than
actual time

• Idea 3: Ordering can be determined by sending and
receiving of messages

Event ordering

The "happens-before" relation → can be observed
directly in two situations:

• Rule 1: If a and b are events in the same process,
and a occurs before b, then a → b is true.

• Rule 2: If a is the event of a message being sent by
one process, and b is the event of the message
being received by another process, then a → b

Transitivity: A → B and B → C => A → C

Partial ordering

• “Happens-before” operator creates a partial
ordering of all events

• If events A and B are connected through other
events

• Always a well-defined ordering

• If no connection between A and B

• A and B are considered concurrent

Lamport timestamps

• Timestamps should follow the partial event
ordering

• A → B => C(A) < C(B)

• Timestamps always increase

• Lamport’s Algorithm:

• Each processor i maintains a logical clock Ci

• Whenever an event occurs locally, Ci = Ci+1

• When i sends message to j, piggyback Ci

• When j receives message from i

• Cj = max(Ci, Cj)+1

Lamport’s logical clocks (without)

Figure 6-9. (a) Three processes, each with its own clock.
The clocks run at different rates.

Lamport’s logical clocks (with)

Figure 6-9. (b) Lamport’s algorithm corrects the clocks.

Lamport’s logical clocks

Figure 6-10. The positioning of Lamport’s logical
clocks in distributed systems.

Example …

24

time @ p1

time @ p3

time @ p2

25

Distributed mutual exclusion

• Multiple processes on different machines may need
to access a critical section

• Shared-memory systems:

• Typically implemented in shared memory

• Processes share same blocking queues

• How to implement mutual exclusion in distributed
systems?

Centralized algorithm

• A coordinator grants access to critical section

• Maintains a local queue

• Coordinator can be elected using an election algorithm

• A process sends request to coordinator

• If nobody in critical section, grant access

• Otherwise, put process in queue

• When process done:

• Send release to coordinator

• Coordinator grants access to next process in queue

Mutual Exclusion:
A Centralized Algorithm

a) Process 1 asks the coordinator for permission to enter a critical region.
Permission is granted

b) Process 2 then asks permission to enter the same critical region. The
coordinator does not reply.

c) When process 1 exits the critical region, it tells the coordinator, when then
replies to 2

Distributed Mutual Exclusion: Ricart/Agrawala

a) Two processes want to enter the same critical region at the same moment.

b) Process 0 has the lowest timestamp, so it wins.

c) When process 0 is done, it sends an OK also, so 2 can now enter the
critical region.

Distributed Mutual Exclusion: Token Rings

a) An unordered group of processes on a network.

b) A logical ring constructed in software.

Algorithm works by passing a token around the ring. When a process
holds the token, it decides if it needs to access the resource at this
time. If so, it holds the token while it does so, passing the token on
once done.

Problems if the token is ever ‘lost’ – token loss may also be difficult to
detect.

Comparison

A comparison of three mutual exclusion algorithms.

Algorithm
Messages

per entry/exit

Delay before entry

(in message times)
Problems

Centralized 3 2 Coordinator crash

Distributed

(Ricart/Agrawala)
2 (n – 1) 2 (n – 1)

Crash of any

process

Token ring 1 to 0 to n – 1
Lost token,

process crash

32

Election Algorithms

Some algorithms require some participating
process to act as coordinator. Assuming

– all processes are the same except for a unique
number

– the highest numbered process gets to be
coordinator

– processes can fail and restart

Election algorithms are a method of finding this
highest numbered process and making it
known to all processes as the coordinator.

The Bully Algorithm (1)

When process P notices that the current
coordinator is no longer responding to
requests, it initiates an election:

1.P sends an ELECTION message to all processes
with higher numbers.

2.If no one responds, P wins the election and
becomes coordinator.

3.If one of the higher-ups answers, it takes over. P’s
job is done.

The Bully Algorithm (2)

Fig 6-20. The bully election algorithm

• Process 4 notices that 7 is no longer available and holds an election by
sending messages to 5 and 6

• Process 5 and 6 respond, telling 4 to stop

• Now 5 and 6 each hold an election

Bully Algorithm (3)

d) Process 6 tells 5 to stop

e) Process 6 wins and tells everyone

f) if process 7 ever restarts, it will notify everyone that it is the coordinator

37

Reasons for Replication

• Data are replicated to increase the reliability
and performance of a system.

• Replication for performance

 Scaling in numbers

 Scaling in geographical area

 Caveat

 Gain in performance

 Cost of increased bandwidth for maintaining
replication

Content Replication and Placement

Figure 7-17. The logical organization of different kinds
of copies of a data store into three concentric rings.

Pull versus Push Protocols for Updates

Figure 7-19. A comparison between push-based and
pull-based protocols in the case of multiple-client,
single-server systems.

Fixed vs elastic
Cloud-based delivery

– Flexible computation, storage, and bandwidth

– Pay per volume and access

Dedicated infrastructure

– Limited storage

– Capped unmetered bandwidth

– Potentially closer to the user

Cloud bandwidth elastic;

however, flexible comes at

premium …

Dan and Carlsson, Dynamic Content Allocation

for Cloud-assisted Service of Periodic

Workloads, Proc. INFOCOM 2014.

