
TDTS04/TDDE35: Distributed Systems

Instructor: Niklas Carlsson

Email: niklas.carlsson@liu.se

Notes derived from “Distributed Systems: 
Principles and Paradigms”, by Andrew S. 

Tanenbaum and Maarten Van Steen, Pearson Int. Ed.

The slides are adapted and modified based on slides used by other 
instructors, including slides used in previous years by Juha
Takkinen, as well as slides used by various colleagues from the 
distributed systems and networks research community.
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Example topics in distributed systems

• Communication: How do distributed 
components talk to each other?

• Synchronization: How do we get a 
consistent view of distributed events?

• Data Sharing: How can distributed 
processes access and update the same data?

• Scheduling: How do we distribute 
computation over multiple resources?

• Fault Tolerance: How do we overcome 
failures of remote components?

• Replica placement and selection:  How to 
distribute/direct resources and processing? 2



Synchronization

• Agreement over global state among distributed 
servers/processes

• Communication:

• Different processes must see messages and 
events in a consistent order

• Sharing:

• Shared resources/data should be consistent

• Master/slave relation:

• Many distributed algorithms require a 
master server
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Time synchronization

• Uniprocessors

• Single clock

• All processes see the same time

• Distributed systems

• Different clocks

• Each machine sees different times
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Clock synchronization

Figure 6-1. When each machine has its own 
clock, an event that occurred after another event 
may nevertheless be assigned an earlier time.



Synchronization

• Time synchronization

• Physical clocks

• Event ordering

• Logical clocks
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Clocks and clock drifts

• Clocks are oscillators

• Drift caused by differences in oscillator 
frequencies

• Coordinated universal time (UTC)
• International standard based on atomic time

• Broadcast via radio, satellites
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Clock synchronization

• Each clock has a maximum drift rate 
• 1- ≤ dC/dt ≤ 1+

• Two clocks may drift by 2 in time 

• To limit drift to , we must therefore resynchronize 
every /2 seconds



Physical Clock Synchronization

• Cristian’s Algorithm and 
NTP – periodically get 
information from a time 
server (assumed to be 
accurate).
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Physical Clock Synchronization

• Cristian’s Algorithm and 
NTP – periodically get 
information from a time 
server (assumed to be 
accurate).

• Berkeley – active time 
server uses polling to 
compute average time. 
Note that the goal is the 
have correct “relative” 
time
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Logical clocks
Observation: It may be sufficient that every node agrees 

on a current time – that time need not be ‘real’ time.
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Logical clocks
Observation: It may be sufficient that every node agrees 

on a current time – that time need not be ‘real’ time.

Taking this one step further, in some cases, it is adequate 
that two systems simply agree on the order in which 
system events occurred.



Event ordering

• Multiple communicating processes running on 
different machines

• Events taking place on each process

• Computation

• Data read/write

• Sending/receiving of messages

• In what order are these events happening?

• Can we use clock times of machines?



Logical clocks

• Maintain ordering of distributed events in a 
consistent manner

• Main Ideas:

• Idea 1: Non-communicating processes do not need to be 
synchronized

• Idea 2: Agreement on ordering is more important than 
actual time

• Idea 3: Ordering can be determined by sending and 
receiving of messages



Event ordering

The "happens-before" relation   → can be observed 
directly in two situations:

• Rule 1: If a and b are events in the same process, 
and a occurs before b, then a → b is true.

• Rule 2: If a is the event of a message being sent by 
one process, and b is the event of the message 
being received by another process, then a → b

Transitivity: A → B and B → C => A → C



Partial ordering

• “Happens-before” operator creates a partial 
ordering of all events

• If events A and B are connected through other 
events

• Always a well-defined ordering

• If no connection between A and B

• A and B are considered concurrent



Lamport timestamps

• Timestamps should follow the partial event 
ordering

• A → B => C(A) < C(B)

• Timestamps always increase

• Lamport’s Algorithm:

• Each processor i maintains a logical clock Ci

• Whenever an event occurs locally, Ci = Ci+1

• When i sends message to j, piggyback Ci

• When j receives message from i

• Cj = max(Ci, Cj)+1



Lamport’s logical clocks (without)

Figure 6-9. (a) Three processes, each with its own clock. 
The clocks run at different rates. 



Lamport’s logical clocks (with)

Figure 6-9. (b) Lamport’s algorithm corrects the clocks.



Lamport’s logical clocks

Figure 6-10. The positioning of Lamport’s logical 
clocks in distributed systems.



Example …
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time @ p1

time @ p3

time @ p2
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Distributed mutual exclusion

• Multiple processes on different machines may need 
to access a critical section

• Shared-memory systems:

• Typically implemented in shared memory

• Processes share same blocking queues

• How to implement mutual exclusion in distributed 
systems?



Centralized algorithm

• A coordinator grants access to critical section

• Maintains a local queue

• Coordinator can be elected using an election algorithm

• A process sends request to coordinator

• If nobody in critical section, grant access

• Otherwise, put process in queue

• When process done:

• Send release to coordinator

• Coordinator grants access to next process in queue



Mutual Exclusion: 
A Centralized Algorithm

a) Process 1 asks the coordinator for permission to enter a critical region.  
Permission is granted

b) Process 2 then asks permission to enter the same critical region.  The 
coordinator does not reply.

c) When process 1 exits the critical region, it tells the coordinator, when then 
replies to 2



Distributed Mutual Exclusion: Ricart/Agrawala

a) Two processes want to enter the same critical region at the same moment.

b) Process 0 has the lowest timestamp, so it wins.

c) When process 0 is done, it sends an OK also, so 2 can now enter the 
critical region.



Distributed Mutual Exclusion: Token Rings

a) An unordered group of processes on a network.  

b) A logical ring constructed in software.

Algorithm works by passing a token around the ring.  When a process 
holds the token, it decides if it needs to access the resource at this 
time.  If so, it holds the token while it does so, passing the token on 
once done.

Problems if the token is ever ‘lost’ – token loss may also be difficult to 
detect.



Comparison

A comparison of three mutual exclusion algorithms.

Algorithm
Messages 

per entry/exit

Delay before entry 

(in message times)
Problems

Centralized 3 2 Coordinator crash

Distributed 

(Ricart/Agrawala)
2 ( n – 1 ) 2 ( n – 1 )

Crash of any 

process

Token ring 1 to  0 to n – 1
Lost token, 

process crash
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Election Algorithms 

Some algorithms require some participating 
process to act as coordinator.  Assuming 

– all processes are the same except for a unique 
number

– the highest numbered process gets to be 
coordinator

– processes can fail and restart

Election algorithms are a method of finding this 
highest numbered process and making it 
known to all processes as the coordinator.



The Bully Algorithm (1)

When process P notices that the current 
coordinator is no longer responding to 
requests, it initiates an election:

1.P sends an ELECTION message to all processes 
with higher numbers.

2.If no one responds, P wins the election and 
becomes coordinator.

3.If one of the higher-ups answers, it takes over. P’s 
job is done.



The Bully Algorithm (2)

Fig 6-20.  The bully election algorithm

• Process 4 notices that 7 is no longer available and holds an election by 
sending messages to 5 and 6

• Process 5 and 6 respond, telling 4 to stop

• Now 5 and 6 each hold an election



Bully Algorithm (3)

d) Process 6 tells 5 to stop

e) Process 6 wins and tells everyone

f) if process 7 ever restarts, it will notify everyone that it is the coordinator



37



Reasons for Replication

• Data are replicated to increase the reliability 
and performance of a system.

• Replication for performance

 Scaling in numbers

 Scaling in geographical area

 Caveat

 Gain in performance

 Cost of increased bandwidth for maintaining 
replication 



Content Replication and Placement

Figure 7-17. The logical organization of different kinds 
of copies of a data store into three concentric rings.



Pull versus Push Protocols for Updates

Figure 7-19. A comparison between push-based and 
pull-based protocols in the case of multiple-client, 
single-server systems.



Fixed vs elastic
Cloud-based delivery

– Flexible computation, storage, and bandwidth

– Pay per volume and access

Dedicated infrastructure

– Limited storage

– Capped unmetered bandwidth

– Potentially closer to the user 

Cloud bandwidth elastic; 

however, flexible comes at 

premium …

Dan and Carlsson, Dynamic Content Allocation 

for Cloud-assisted Service of Periodic 

Workloads, Proc. INFOCOM 2014. 


