
TDTS04/TDDE35: Distributed Systems

Instructor: Niklas Carlsson

Email: niklas.carlsson@liu.se

Notes derived from “Distributed Systems:
Principles and Paradigms”, by Andrew S.

Tanenbaum and Maarten Van Steen, Pearson Int. Ed.

The slides are adapted and modified based on slides used by other
instructors, including slides used in previous years by Juha
Takkinen, as well as slides used by various colleagues from the
distributed systems and networks research community.

1

mailto:niklas.carlsson@liu.se

Goals

• Study concepts that build the foundations
of large-scale systems

• Learn about tradeoffs when building large-
scale systems

• Learn from case studies, example systems

• Get exposure to system building and (if
time) distributed systems research

2

Distributed systems

?
3

Distributed systems

“A collection of independent computers that
appears to its users as a single coherent system”

4

Distributed systems

• Examples include …

• Web, web search, social networks, …

• Peer-to-peer, file-sharing, …

• Cloud services, scientific computing, …

• Finance, healthcare, education,
transportation/logistics, environmental
engineering, entertainment/gaming, …

• … (many many many more) ...

“A collection of independent computers that
appears to its users as a single coherent system”

5

Distributed systems

“A collection of independent computers that
appears to its users as a single coherent system”

6

Distributed systems

“A collection of independent computers that
appears to its users as a single coherent system”

7

trading
chunks

peer

Distributed systems

“A collection of independent computers that
appears to its users as a single coherent system”

8

Distributed systems

“A collection of independent computers that
appears to its users as a single coherent system”

9

Distributed systems

“A collection of independent computers that
appears to its users as a single coherent system”

10

UE

Distributed systems

• Examples include …

• Web, web search, social networks, …

• Peer-to-peer, file-sharing, …

• Cloud services, scientific computing, …

• Finance, healthcare, education,
transportation/logistics, environmental
engineering, entertainment/gaming, …

• … (many many many more) ...

• 2017: CDN example

“A collection of independent computers that
appears to its users as a single coherent system”

11

Distributed systems

“A collection of independent computers that
appears to its users as a single coherent system”

12

 Networks of computers are everywhere!
 Mobile phone networks

 Corporate networks

 Factory networks

 Campus networks

 Home networks

 In-car networks

 On-board networks in planes and trains

 …

Distributed systems

• Hardware view

• Multiple independent but cooperating
resources

• Software view

• Single unified system (e.g., application)

• Small vs large (full spectrum)
• E.g., Multiprocessor vs. world-wide

13

“A collection of independent computers that
appears to its users as a single coherent system”

14

Distributed systems

• Benefits?

• Problems?

15

Distributed systems

• Benefits?
• Performance

• Distribution

• Reliability

• Incremental growth

• Sharing of data/resources

• Problems?

16

Distributed systems

• Benefits?
• Performance

• Distribution

• Reliability

• Incremental growth

• Sharing of data/resources

• Problems?
• Difficulties developing software

• Network problems

• Security problems

17

18

Distributed systems

• Goals

• Sharing (incl. openness and heterogeneity)

• Transparency

• Scalability (incl. communication)

• Reliability

19

Sharing

• Multiple users can share and access remote
resources

• Hardware, files, data, etc.

• Open standardized interface

• Often heterogeneous environment (hardware,
software, devices, underlying network
protocols, etc.)

• Middleware layer to mask heterogeneity

• Separate policies from mechanisms

20

Transparency

• Hide the distributed nature of system from users

• Several types:
• Location: Hide where a resource is located

• Migration: Resources can be moved

• Relocation: Resources can be moved while being used

• Replication: Multiple copies of same resource can exist

• Failure: Hide failures of remote resources

• …

21

Transparency in a Distributed System

Different forms of transparency in a distributed system.

(Bold mentioned on previous slide too.)

Hide whether a (software) resource is in memory or

on disk
Persistence

Hide the failure and recovery of a resourceFailure

Hide that a resource may be shared by several

competitive users
Concurrency

Hide that multiple copies of a resource existReplication

Hide that a resource may be moved to another

location while in use
Relocation

Hide that a resource may move to another locationMigration

Hide where a resource is locatedLocation

Hide differences in data representation and how a

resource is accessed
Access

DescriptionTransparency

22

Scalability

• Allow the system to become bigger
without negatively affecting performance

• Multiple dimensions:
• Size: Adding more resources and users

• Geographic: Dispersed across locations

• Administrative: Spanning multiple
administrative domains

23

Scalability

• Scalability problems appear as
performance problems

• System load, storage requirements,
communication overhead, ...

• Some common techniques:

– Divide and conquer

– Replication

– Distributed operation

– Service aggregation

– Asynchronous communication

– Multicast 24

Scalability File Distribution Example:
Client-server vs P2P

Question : How much time to distribute file from
one server to N peers?

us

u2d1 d2

u1

uN

dN

Server

Network (with
abundant bandwidth)

File, size F

us: server upload
bandwidth

ui: peer i upload
bandwidth

di: peer i download
bandwidth

25

File distribution time: Client-server

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

Fserver must upload N
copies:

– NF/us time

client i takes F/di time
to download

increases linearly in N
(for large N)

= dcs = max { NF/us, F/min(di) }
i

Time to distribute F
to N clients using

client/server approach

26

File distribution time: P2P

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F
server must send one copy: F/us

time

client i takes F/di time to
download

NF bits must be downloaded
(aggregate)

fastest possible upload rate: us + Sui

dP2P = max { F/us, F/min(di) , NF/(us + Sui) }i

27

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
u
m

 D
is

tr
ib

u
ti
o
n
 T

im
e P2P

Client-Server

Server-client vs. P2P: example

Client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

28

Reliability

• Availability

• If a machines goes down, the system
should work with the reduced amount of
resources

• Replication used to ensure that data is
not lost (should be consistent)

• Fault tolerance

• The system must be able to detect faults,
mask faults (if possible), or gracefully
fail (if needed)

29

30

Distributed systems

• Remember the goals just discussed ...

• Sharing (incl. openness and heterogeneity)

• Transparency

• Scalability (incl. communication)

• Reliability

Question: What complicates these goals?

31

Common Pitfalls
(bad/dangerous assumptions!)

• The network is reliable

• The network is secure

• The network is homogenous

• The topology does not change

• Latency is zero

• Bandwidth is infinite

• Transport cost is zero

• There is one administrator

32

33

Distributed system architecture

• A distributed application runs across
multiple machines

• How to organize the various pieces of
the application?

• Where is the user interface,
computation, data?

• How do different pieces interact with
each other?

34

Architectures

• Centralized: Most functionality is in a
single machine

• Distributed: Functionality is spread across
symmetrical machines

• Hybrid: Combination of the two

35

Centralized architecture

• Client-server

• Client implements the user interface

• Server has most of the functionality

• Computation, data

• E.g.: Web

36

Centralized architectures

Figure 2-3. General interaction between a client and
a server.

37

Server design issues

Server organization; e.g., How to process client
requests?

Client contact; e.g., how to contact end point
(port)

38

Server design issues

Server organization; e.g., How to process client
requests?

– Iterative

– Concurrent

• Multithreaded

• Fork (unix)

– Stateless or stateful

Client contact; e.g., how to contact end point
(port)

39

Server design issues

Server organization; e.g., How to process client
requests?

– Iterative

– Concurrent

• Multithreaded

• Fork (unix)

– Stateless or stateful

Client contact; e.g., how to contact end point
(port)

– Well-known (e.g., port 80 ...)

– Dynamic: daemon; superserver (unix)
40

End point, general design issues

• Figure 3-11. (a) Client-to-server binding using a
daemon.

41

End point, general design issues

Figure 3-11. (b) Client-to-server binding using a
superserver.

42

Decentralized architectures

• Vertical distribution
• Distribution along functionality

• Horizontal distribution
• E.g., Peer-to-peer distribution

43

Client-server architecture

• Application is vertically distributed

• Distribution along functionality

• Logically different component at
different place

44

Component distribution

• Could have variations on component
distribution

• Different amount of functionality between
client-server

• Only UI at client

• UI+partial processing at client

• UI+processing at client, data at server

45

Server offloading

1.4

The difference between letting:

a) a server or

b) a client check forms as they are being filled 46

Physical two-tired architectures

Alternative client-server organizations (a) – (e).

1-29

47

• Two-tier model (classic)

• Three-tier (when the server, becomes a client)

• Multi-tier (cascade model)

Client-Server Architecture
(Tiered architecture)

client server

client Server/client server

client Server/client
server

Server/client

server

Multi-tiered servers

• Server may not be a single machine

• Multi-tiered architecture:

• Front-end

• Application server

• Database

49

Application layering

• The user-interface level
• The processing level
• The data level

50

Application layering

The general organization of an Internet search engine into
three different layers

1-28

51

Multi-tiered architectures

An example of a server acting as a client.

1-30

52

53

Server clusters

• Replication of functionality across
machines

• Multiple front-ends, app servers,
databases

• Client requests are distributed among the
servers

• Load balancing

• Content-aware forwarding

54

Server clusters

Figure 3-12. The general organization of a
three-tiered server cluster.

55

Server clusters

Figure 3-13. The principle of TCP handoff.

56

Modern Architectures

An example of horizontal distribution of a Web service.

1-31

57

Replica selection

• Round robin

• Load-based policies

• Payload-based methods (e.g., priorities)

• Energy/resource usage aware policies (e.g.,
costs)

• Nearby

• … and many other criteria ...

58

59

60

More slides …

61

Decentralized architectures

• Horizontal distribution of application

• Each component is identical in functionality

• Differ in the portion of data they operate on

• E.g.: DNS, File-sharing, parallel processing

62

Hierarchical architectures

• Tree of nodes

• Centralized architecture between parent
and children

• More scalable than a centralized
architecture

• Each node handles only part of the
network

63

Peer-to-peer systems

• Each component is symmetric in
functionality

• Peer: Combination of server-client

• How does a node find the other?

• No “well-known” centralized server

64

Overlay networks

• A logical network consisting of participant
components (processes/machines)

• Built on top of physical network

• Can be thought of as a graph

• Nodes are processes/machines, links are
communication channels (e.g., TCP
connections)

65

Types of peer-to-peer systems

• Unstructured: Built in a random manner

• Each node can end up with any sets of
neighbors, any part of application data

• E.g.: Gnutella, Kazaa

• Structured: Built in a deterministic manner

• Each node has well-defined set of
neighbors, handles specific part of
application data

• E.g.: CAN, Chord, Pastry

66

Hybrid architectures

• Combination of centralized and distributed
architectures

• Some parts of the system organized as
client-servers

• Other parts organized in decentralized
manner

67

Content distribution networks (CDNs)

• Provide localized content to users

• Decentralized set of content servers, may
have P2P relationship

• Client-Server relation to the users

• E.g., Akamai

68

Collaborative distributed systems

• Work by user collaboration

• P2P in functionality

• Startup is done in a client-server manner

• E.g., Bittorrent, Napster

69

Other service model variations

• Multiple servers and caches (proxies)

• Mobile code

• Mobile agents

• Low-cost computers at client side
(networked computers, and thin clients)

• Mobile devices

• …

70

71

More slides …

72

Unstructured peer-to-peer architectures

• Each node has a list of neighbors to which
it is connected

• Communication to other nodes in the
network happens through neighbors

• Neighbors are discovered in a random
manner

• Exchange information with other nodes to
maintain neighbor lists

• Application data is randomly spread across
the nodes

• Flooding: To search for a specific item
73

Structured peer-to-peer architectures

• Nodes and data are organized
deterministically

• Distributed Hash Tables (DHT)

• Each node has a well-defined ID

• Each data item also has a key

• A data item resides in the node with
nearest key

• Each node has information about
neighbors in the ID space

• Searching for a data item:

• Routing through the DHT overlay 74

