P2P file sharing

Notes based on notes by
K.W. Ross, J. Kurose, D.
Rubenstein, and others




P2P: centralized directory e

original "Napster” design . e

1) When peer- ConneCTS, it directory server
informs central server: &7
O IP address | R
O content 3

2) Alice queries for "Hey
Jude”

3) Alice requests file from
Bob

TDDD36: Peer-to-peer



Napster

napster.com

1. File list centralized directory
and IP =
address is

uploaded | f




Napster

napster.com

2. User centralized directory
requests
search at -
server. Query
and ’T
results




Napster

napster.com

3 USer' pings centralized directory
hosts that
apparently
have data.

Looks for
best transfer
rate.




Napster

napster.com
4. User chooses centralized directory

server

Napster's \
centralized Retrieves |
server farm had file

difficult time

keeping

up with traffic

6



P2P: problems with centralized directory

3 single point of failure file transfer is
O performance bottleneck decentralized, but

ST . locating content is
3 copyright infringement: . .
“target” of lawsuit is highly centralized

obvious

TDDD36: Peer-to-peer



Unstructured P2P: Gnutella

3 focus: decentralized method of searching
for files

O central directory server no longer the
bottleneck

o more difficult to "pull plug”

O each application instance serves to:
O store selected files
O route queries from and to its neighboring peers
O respond to queries if file stored locally
O serve files



Gnutella: protocol
File transfer:

O Query message
sent over existing TCP HTTP

connections
O peers forward
Query message
O QueryHit
sent over
reverse

path

Query
QueryHit

A 4

7

Scalability:
limited scope
flooding

TDDD36: Peer-to-peer



Distributed Search/Flooding

10



Distributed Search/Flooding

11



Hierarchical Overlay

7 between centralized
index, query flooding
approaches

O each peer is either a
group leader or assigned
to a group leader.

O TCP connection between
peer and its group leader.

O TCP connections between

Some pClIr‘S Of gl"OUp |€Cld€r‘5. @® ordinary peer
3 group leader tracks @ oour-caderpeer
content in its children —— neighoring relationships

TDDD36: Peer-to-peer



KaZaA: Architecture

3 Each peer is
either a supernode

or is assigned to a \

supernode g
3 Each supernode

knows about many

other supernodes

(almost mesh
overlay)

supernodes

13



KaZaA: Architecture (2)

7 Nodes that have more connection
bandwidth and are more available are
designated as supernodes

7 Each supernode acts as a mini-Napster hub,
tracking the content and IP addresses of
its descendants

7 Guess@peak: supernode had (on average)
200-500 descendants; roughly 10,000

supernodes

3 There is also dedicated user authentication
. Server and supernode list server



Parallel Downloading; Recovery

O If file is found in multiple nodes, user can
select parallel downloading

0 Most likely HTTP byte-range header used
to request different portions of the file
from different nodes

7 Automatic recovery when server peer
stops sending file

15



KaZaA Corporate Structure

3 Software developed
by FastTrack in
Amsterdam

3 FastTrack also deploys
KaZaA service

3 FastTrack licenses
software to Music City
(Morpheus) and
Grokster

3 Later, FastTrack
terminates license,
leaves only KaZaA with
killer service

16

3 Summer 2001, Sharman
networks, founded in
Vanuatu (small island in
Pacific), acquires
FastTrack

O Board of directors,
investors: secret

J Employees spread
around, hard to locate

7 Code in Estonia



Lessons learned from KaZaA

KaZaA provides powerful
file search and transfer
service without server

infrastructure

Copyright infringement

0 Exploit heterogeneity

3 Provide automatic

recovery for
interrupted downloads

3 Powerful, intuitive
user interface

17

3 International cat-and-
mouse game

3 With distributed,
serverless
architecture, can the

plug be pulled?
3 Prosecute users?

3 Launch DoS attack on
supernodes?

3 Pollute?



P2P Case study: Skype

Skype clients (SC)

3 inherently P2P: pairs 22 ®
of users communicate. n s s
O proprietary Skype 4
login server

application-layer
protocol (inferred via

reverse engineering) ® ‘@“ :

3 hierarchical overlay SN SKVPE,
with Supernodes B = 0
(SNs) SVl T~ ST

0 Index maps usernames U Sl

to IP addresses;
distributed over SNs

TDDD36: Peer-to-peer



Peers as relays

3 Problem when both
Alice and Bob are
behind "NATs".

O NAT prevents an outside
peer from initiating a call
to insider peer

TDDD36: Peer-to-peer



Peers as relays

3 Problem when both
Alice and Bob are
behind "NATs".

O NAT prevents an outside
peer from initiating a call
to insider peer

3 Solution:

O Using Alice's and Bob's
SNs, Relay is chosen

O Each peer initiates
session with relay.

O Peers can now
communicate through
NATSs via relay

TDDD36: Peer-to-peer



Structured p2p systems

21



Distributed Hash Table (DHT)

A DHT = distributed P2P database

O Database has (key, value) pairs;
O key: ss number; value: human name
O key: content type; value: IP address

3 Peers query DB with key
O DB returns values that match the key

7 Peers can also insert (key, value) peers

22



DHT Identifiers

0 Assign integer identifier to each peer in range
[0,2n-1].
O Each identifier can be represented by n bits.
7 Require each key to be an integer in same range.
7 To get integer keys, hash original key.
O eg, key = h("Led Zeppelin IV")
O This is why they call it a distributed "hash" table

23



How to assign keys to peers?

3 Central issue:
O Assigning (key, value) pairs to peers.

O Rule: assign key to the peer that has the
closest ID.

0 Convention in lecture: closest is the closest
successor of the key.

J Ex: n=4; peers: 1,3,4,5,8,10,12,14;
O key = 13, then successor peer = 14
O key = 15, then successor peer = 1

24



Circular DHT (1)

15

12

10
8

3 Each peer only aware of immediate successor
and predecessor.

3 "Overlay network”

25



Circle DHT (2)

0001 Who's

responsible
for key 1110 ?

O(N) messages
onh avg to resolve
query, when there

are N peers
g —

0100

0101

Define closest
as closest

1000
successor




Circle DHT (2)

0001 Who's

responsible
for key 1110 ?

O(N) messages
onh avg to resolve
query, when there

are N peers
g —

0100

0101

Define closest
s closest

a 1000

successor




Circular DHT with Shortcuts

Who's
responsible
for key 1110?

15

12

10
8

3 Each peer keeps track of IP addresses of predecessor,

successor, short cuts.
0 Reduced from 6 to 2 messages.

O Possible to design shortcuts so O(log N) neighbors,
O(log N) messages in query

28



Example: Chord Routing [see
paper for details]

T A node s's ith neighbor has the ID that is equal to s+2
or is the next largest ID (mod ID space), i20

0 To reach the node handling ID t, send the message to
neighbor #log,(t-s)

T Requirement: each node s must know about the next
node that exists clockwise on the Chord (0™ neighbor)

3 Set of known neighbors called a finger table

29



Chord Routing (cont'd)

Finger table

N32



Chord Routing (cont'd)

Chord protocol

N1

) lookup(54)
// ask node n to find the successor
// of id N8
n.find_successor(id) N5
if (id € (n, successor])
return successor;
else N51
n’ = closest_preceding_node(id); N14
return n’'.find_successor(id); N48

// search the local table for the
// highest predecessor of id
n.closest_preceding_node(id)
for 1 = m downto 1 N21
if (finger[i] € (n, id))
return finger(i);
return n;

N32



32



DHT APT

33

API}

application
DHT substrate
/

|

key

each data item (e.g., file or metadata
pointing to file copies) has a key

application responsible
API node
DHT substrate
R
) ()
T (3
S5
NE |2
overlay 5| £
=
network S
>
=
. N
application
API
DHT substrate




DHT Layered Architecture

Event Network
notification storage

TCP/IP

34

P2P application layer

P2P substrate
(self-organizing
overlay network)

Internet



35



BitTorrent-like systems

3 File split info many smaller pieces
7 Pieces are downloaded from both seeds and downloaders

O Distribution paths are dynamically determined
O Based on data availability

Downloader

| Downloader Seed
Downloaderl

Seed

Torrent

(x downloaders; y seeds)

Arrivals

Departures

Downloader . _)\/

Download time
€ >

Seed residence

€ time >

36



File distribution: BitTorrent

O P2P file distribution

fracker: tracks peers torrent: group of

participating in torrent peers Sez‘%'ga?' ie”9

obtain list
of peers

37



Download using BitTorrent
Background: Incentive mechanism
3 Establish connections to large set of peers

O At each time, only upload to a small (changing) set of peers
7 Rate-based tit-for-tat policy

O Downloaders give upload preference to the downloaders
that provide the highest download rates

Highest download rates ——2 > Pick top four

>Pick one at random
Optimistic unchoke

38



Download using BitTorrent

Background: Piece selection

Peer 1 . 2

k

e SRR

Pieces in neighbor set: (1)

(2)(1)

HERN

(2) (3)(

&

(2)

)
" @

3 Rarest first piece selection policy

O Achieves high piece diversity
0 Request pieces that

O the uploader has;
o the downloader is interested (wants); and
O is the rarest among this set of pieces

39



40



Background

Peer discovery in BitTorrent

w®
3 Torrent file "
o “announce” URL

o Tracker |
O Register torrent file
O Maintain state information

3 Peers
o Obtain torrent file
o Announce
O Report status
o Peer exchange (PEX)

7 Issues
o Central point of failure
o Tracker load

41



Background

Multi-tracked torrents

. =3 ey
3 Torrent file " e

o ‘announce-list” URLsS 7{,_(

e A
J Trackers /' 4 »

O Register torrent file A
o Maintain state information ! !

O Peers Qo
o Obtain torrent file ol
o Choose one tracker at random
o Announce v
O Report status é 4‘
o Peer exchange (PEX)

3 Issue
o Multiple smaller swarms




Tracker-less torrents

3 Combine DHTs and BT ... [notes on board]

43



