
P2P file sharing
Notes based on notes by 
K.W. Ross, J. Kurose, D. 
Rubenstein, and others



P2P: centralized directory

original “Napster” design

1) when peer connects, it 
informs central server:
 IP address

 content

2) Alice queries for “Hey 
Jude”

3) Alice requests file from 
Bob

centralized
directory server

peers

Alice

Bob
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Napster

File list 
and IP 
address is 
uploaded

1.
napster.com 

centralized directory
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Napster
napster.com 

centralized directory

Query
and
results

User   
requests 
search at 
server.

2.
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Napster

pings
pings

User pings 
hosts that 
apparently 
have data.

Looks for 
best transfer 
rate.

3.

napster.com 

centralized directory
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Napster
napster.com 

centralized directory

Retrieves
file

User chooses
server

4.

Napster’s 

centralized 

server farm had 

difficult time 

keeping 

up with traffic



P2P: problems with centralized directory

 single point of failure

 performance bottleneck

 copyright infringement: 
“target” of lawsuit is 
obvious

file transfer is 
decentralized, but 
locating content is 
highly  centralized

TDDD36: Peer-to-peer
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Unstructured P2P: Gnutella

 focus: decentralized method of searching 
for files
 central directory server no longer the 

bottleneck

 more difficult to “pull plug”

 each application instance serves to:
 store selected files

 route queries from and to its neighboring peers

 respond to queries if file stored locally

 serve files



Gnutella: protocol

Query

QueryHit

Query

QueryHit

File transfer:
HTTP

 Query message
sent over existing TCP
connections
 peers forward
Query message
 QueryHit 
sent over 
reverse
path

Scalability:
limited scope
flooding

TDDD36: Peer-to-peer
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Distributed Search/Flooding
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Distributed Search/Flooding



Hierarchical Overlay

 between centralized 
index, query flooding 
approaches

 each peer is either a 
group leader or assigned 
to a group leader.
 TCP connection between 

peer and its group leader.

 TCP connections between 
some pairs of group leaders.

 group leader tracks 
content in  its children

ordinary peer

group-leader peer

neighoring relationships

in overlay network

TDDD36: Peer-to-peer
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KaZaA: Architecture

 Each peer is 
either a supernode 
or is assigned to a 
supernode

 Each supernode 
knows about many 
other supernodes 
(almost mesh 
overlay)

supernodes
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KaZaA: Architecture (2)

Nodes that have more connection 
bandwidth and are more available are 
designated as supernodes

 Each supernode acts as a mini-Napster hub, 
tracking the content and IP addresses of 
its descendants

 Guess@peak: supernode had (on average) 
200-500 descendants; roughly 10,000 
supernodes

 There is also dedicated user authentication 
server and supernode list server
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Parallel Downloading; Recovery

 If file is found in multiple nodes, user can 
select parallel downloading

Most likely HTTP byte-range header used 
to request different portions of the file 
from different nodes

Automatic recovery when server peer 
stops sending file
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KaZaA Corporate Structure

 Software developed  
by FastTrack in 
Amsterdam

 FastTrack also deploys 
KaZaA service

 FastTrack licenses 
software to Music City 
(Morpheus) and 
Grokster

 Later, FastTrack 
terminates license, 
leaves only KaZaA with 
killer service

 Summer 2001, Sharman 
networks, founded in 
Vanuatu (small island in 
Pacific), acquires 
FastTrack
 Board of directors, 

investors: secret

 Employees spread 
around, hard to locate

 Code in Estonia
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Lessons learned from KaZaA

 Exploit heterogeneity

 Provide automatic 
recovery for 
interrupted downloads

 Powerful, intuitive 
user interface

Copyright infringement

 International cat-and-
mouse game

 With distributed, 
serverless 
architecture, can the 
plug be pulled?

 Prosecute users?

 Launch DoS attack on 
supernodes?

 Pollute?

KaZaA provides powerful 

file search and transfer 

service without server 

infrastructure



P2P Case study: Skype

 inherently P2P: pairs 
of users communicate.

 proprietary 
application-layer 
protocol (inferred via 
reverse engineering) 

 hierarchical overlay 
with Supernodes 
(SNs)

 Index maps usernames 
to IP addresses; 
distributed over SNs

Skype clients (SC)

Supernode 
(SN)

Skype 
login server

TDDD36: Peer-to-peer



Peers as relays

 Problem when both 
Alice and Bob are 
behind  “NATs”. 
 NAT prevents an outside 

peer from initiating a call 
to insider peer

TDDD36: Peer-to-peer



Peers as relays

 Problem when both 
Alice and Bob are 
behind  “NATs”. 
 NAT prevents an outside 

peer from initiating a call 
to insider peer

 Solution:
 Using Alice’s and Bob’s 

SNs, Relay is chosen
 Each peer initiates 

session with relay. 
 Peers can now 

communicate through 
NATs via relay

TDDD36: Peer-to-peer



Structured p2p systems
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Distributed Hash Table (DHT)

DHT = distributed P2P database

Database has (key, value) pairs; 
 key: ss number; value: human name

 key: content type; value: IP address

 Peers query DB with key
 DB returns values that match the key

 Peers can also insert (key, value) peers
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DHT Identifiers

Assign integer identifier to each peer in range 
[0,2n-1].
 Each identifier can be represented by n bits.

 Require each key to be an integer in same range.

 To get integer keys, hash original key.
 eg, key = h(“Led Zeppelin IV”)

 This is why they call it a distributed “hash” table
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How to assign keys to peers?

 Central issue:
 Assigning (key, value) pairs to peers.

 Rule: assign key to the peer that has the 
closest ID.

 Convention in lecture: closest is the closest 
successor of the key.

 Ex: n=4; peers: 1,3,4,5,8,10,12,14; 
 key = 13, then successor  peer = 14

 key = 15, then successor peer = 1
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1

3

4

5

8
10

12

15

Circular DHT (1)

 Each peer only aware of immediate successor 
and predecessor.

 “Overlay network”
25



Circle DHT  (2)

0001

0011

0100

0101

1000
1010

1100

1111

Who’s 
responsible 
for key 1110 ?

I am

O(N) messages
on avg to resolve
query, when there
are N peers

1110

1110

1110

1110

1110

1110

Define closest
as closest
successor
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Circle DHT  (2)

0001

0011

0100

0101

1000
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Circular DHT with Shortcuts

 Each peer keeps track of IP addresses of predecessor, 
successor, short cuts.

 Reduced from 6 to 2 messages.
 Possible to design shortcuts so O(log N) neighbors, 

O(log N) messages in query

1

3

4

5

8
10

12

15

Who’s 
responsible 
for key 1110? 
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Example: Chord Routing [see 
paper for details]
 A node s’s ith neighbor has the ID that is equal to  s+2i

or is the next largest ID (mod ID space), i≥0

 To reach the node handling ID t, send the message to 
neighbor #log2(t-s)

 Requirement: each node s must know about the next 
node that exists clockwise on the Chord (0th neighbor)

 Set of known neighbors called a finger table



Chord Routing (cont’d)



Chord Routing (cont’d)
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DHT API

application

DHT substrate
API

application

DHT substrate
API

overlay
network

key
responsible
node

each data item (e.g., file or metadata 

pointing to file copies) has a key 
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DHT Layered Architecture

TCP/IP

DHT

Network 

storage

Event 

notification

Internet

P2P substrate 

(self-organizing

overlay network)

P2P application layer?
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BitTorrent-like systems

 File split into many smaller pieces
 Pieces are downloaded from both seeds and downloaders
 Distribution paths are dynamically determined

 Based on data availability

Arrivals

Departures

Downloader

Downloader

Downloader

Downloader

Seed

Seed

Download time

Seed residence 

time

Torrent
(x downloaders; y seeds)
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File distribution: BitTorrent 

tracker: tracks peers 
participating in torrent

torrent: group of 
peers exchanging  
chunks of a file

obtain list
of peers

trading 
chunks

peer

 P2P file distribution
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Download using BitTorrent 
Background: Incentive mechanism
 Establish connections to large set of peers

 At each time, only upload to a small (changing) set of peers

 Rate-based tit-for-tat policy
 Downloaders give upload preference to the downloaders 

that provide the highest download rates

Highest download rates

Optimistic unchoke

Pick top four

Pick one at random
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Download using BitTorrent 
Background: Piece selection

 Rarest first piece selection policy
 Achieves high piece diversity

 Request pieces that
 the uploader has;
 the downloader is interested (wants); and
 is the rarest among this set of pieces

Peer 1:

Peer N : 

Peer 2:

……

Pieces in neighbor set:

1 2 3 k K

1 2 3 k K

1 2 3 k K

1 2 3 k K

(1) (2) (1) (2) (2) (3) (2)
……

……

……

from

to

39
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Background
Peer discovery in BitTorrent

 Torrent file
 “announce” URL

 Tracker
 Register torrent file

 Maintain state information

 Peers
 Obtain torrent file

 Announce 

 Report status

 Peer exchange (PEX)

 Issues
 Central point of failure

 Tracker load
Swarm = Torrent
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Background
Multi-tracked torrents

 Torrent file
 “announce-list” URLs

 Trackers
 Register torrent file

 Maintain state information

 Peers
 Obtain torrent file

 Choose one tracker at random

 Announce 

 Report status

 Peer exchange (PEX)

 Issue
 Multiple smaller swarms

SwarmTorrent
SwarmTorrent
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Tracker-less torrents

 Combine DHTs and BT … [notes on board]
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