
P2P file sharing
Notes based on notes by 
K.W. Ross, J. Kurose, D. 
Rubenstein, and others



P2P: centralized directory

original “Napster” design

1) when peer connects, it 
informs central server:
 IP address

 content

2) Alice queries for “Hey 
Jude”

3) Alice requests file from 
Bob

centralized
directory server

peers

Alice

Bob

1

1

1

12

3

TDDD36: Peer-to-peer



3

Napster

File list 
and IP 
address is 
uploaded

1.
napster.com 

centralized directory



4

Napster
napster.com 

centralized directory

Query
and
results

User   
requests 
search at 
server.

2.



5

Napster

pings
pings

User pings 
hosts that 
apparently 
have data.

Looks for 
best transfer 
rate.

3.

napster.com 

centralized directory



6

Napster
napster.com 

centralized directory

Retrieves
file

User chooses
server

4.

Napster’s 

centralized 

server farm had 

difficult time 

keeping 

up with traffic



P2P: problems with centralized directory

 single point of failure

 performance bottleneck

 copyright infringement: 
“target” of lawsuit is 
obvious

file transfer is 
decentralized, but 
locating content is 
highly  centralized

TDDD36: Peer-to-peer



8

Unstructured P2P: Gnutella

 focus: decentralized method of searching 
for files
 central directory server no longer the 

bottleneck

 more difficult to “pull plug”

 each application instance serves to:
 store selected files

 route queries from and to its neighboring peers

 respond to queries if file stored locally

 serve files



Gnutella: protocol

Query

QueryHit

Query

QueryHit

File transfer:
HTTP

 Query message
sent over existing TCP
connections
 peers forward
Query message
 QueryHit 
sent over 
reverse
path

Scalability:
limited scope
flooding

TDDD36: Peer-to-peer



10

Distributed Search/Flooding



11

Distributed Search/Flooding



Hierarchical Overlay

 between centralized 
index, query flooding 
approaches

 each peer is either a 
group leader or assigned 
to a group leader.
 TCP connection between 

peer and its group leader.

 TCP connections between 
some pairs of group leaders.

 group leader tracks 
content in  its children

ordinary peer

group-leader peer

neighoring relationships

in overlay network

TDDD36: Peer-to-peer



13

KaZaA: Architecture

 Each peer is 
either a supernode 
or is assigned to a 
supernode

 Each supernode 
knows about many 
other supernodes 
(almost mesh 
overlay)

supernodes



14

KaZaA: Architecture (2)

Nodes that have more connection 
bandwidth and are more available are 
designated as supernodes

 Each supernode acts as a mini-Napster hub, 
tracking the content and IP addresses of 
its descendants

 Guess@peak: supernode had (on average) 
200-500 descendants; roughly 10,000 
supernodes

 There is also dedicated user authentication 
server and supernode list server



15

Parallel Downloading; Recovery

 If file is found in multiple nodes, user can 
select parallel downloading

Most likely HTTP byte-range header used 
to request different portions of the file 
from different nodes

Automatic recovery when server peer 
stops sending file



16

KaZaA Corporate Structure

 Software developed  
by FastTrack in 
Amsterdam

 FastTrack also deploys 
KaZaA service

 FastTrack licenses 
software to Music City 
(Morpheus) and 
Grokster

 Later, FastTrack 
terminates license, 
leaves only KaZaA with 
killer service

 Summer 2001, Sharman 
networks, founded in 
Vanuatu (small island in 
Pacific), acquires 
FastTrack
 Board of directors, 

investors: secret

 Employees spread 
around, hard to locate

 Code in Estonia



17

Lessons learned from KaZaA

 Exploit heterogeneity

 Provide automatic 
recovery for 
interrupted downloads

 Powerful, intuitive 
user interface

Copyright infringement

 International cat-and-
mouse game

 With distributed, 
serverless 
architecture, can the 
plug be pulled?

 Prosecute users?

 Launch DoS attack on 
supernodes?

 Pollute?

KaZaA provides powerful 

file search and transfer 

service without server 

infrastructure



P2P Case study: Skype

 inherently P2P: pairs 
of users communicate.

 proprietary 
application-layer 
protocol (inferred via 
reverse engineering) 

 hierarchical overlay 
with Supernodes 
(SNs)

 Index maps usernames 
to IP addresses; 
distributed over SNs

Skype clients (SC)

Supernode 
(SN)

Skype 
login server

TDDD36: Peer-to-peer



Peers as relays

 Problem when both 
Alice and Bob are 
behind  “NATs”. 
 NAT prevents an outside 

peer from initiating a call 
to insider peer

TDDD36: Peer-to-peer



Peers as relays

 Problem when both 
Alice and Bob are 
behind  “NATs”. 
 NAT prevents an outside 

peer from initiating a call 
to insider peer

 Solution:
 Using Alice’s and Bob’s 

SNs, Relay is chosen
 Each peer initiates 

session with relay. 
 Peers can now 

communicate through 
NATs via relay

TDDD36: Peer-to-peer



Structured p2p systems

21



Distributed Hash Table (DHT)

DHT = distributed P2P database

Database has (key, value) pairs; 
 key: ss number; value: human name

 key: content type; value: IP address

 Peers query DB with key
 DB returns values that match the key

 Peers can also insert (key, value) peers

22



DHT Identifiers

Assign integer identifier to each peer in range 
[0,2n-1].
 Each identifier can be represented by n bits.

 Require each key to be an integer in same range.

 To get integer keys, hash original key.
 eg, key = h(“Led Zeppelin IV”)

 This is why they call it a distributed “hash” table

23



How to assign keys to peers?

 Central issue:
 Assigning (key, value) pairs to peers.

 Rule: assign key to the peer that has the 
closest ID.

 Convention in lecture: closest is the closest 
successor of the key.

 Ex: n=4; peers: 1,3,4,5,8,10,12,14; 
 key = 13, then successor  peer = 14

 key = 15, then successor peer = 1

24



1

3

4

5

8
10

12

15

Circular DHT (1)

 Each peer only aware of immediate successor 
and predecessor.

 “Overlay network”
25



Circle DHT  (2)

0001

0011

0100

0101

1000
1010

1100

1111

Who’s 
responsible 
for key 1110 ?

I am

O(N) messages
on avg to resolve
query, when there
are N peers

1110

1110

1110

1110

1110

1110

Define closest
as closest
successor

26



Circle DHT  (2)

0001

0011

0100

0101

1000
1010

1100

1111

Who’s 
responsible 
for key 1110 ?

I am

O(N) messages
on avg to resolve
query, when there
are N peers

1110

1110

1110

1110

1110

1110

Define closest
as closest
successor

27



Circular DHT with Shortcuts

 Each peer keeps track of IP addresses of predecessor, 
successor, short cuts.

 Reduced from 6 to 2 messages.
 Possible to design shortcuts so O(log N) neighbors, 

O(log N) messages in query

1

3

4

5

8
10

12

15

Who’s 
responsible 
for key 1110? 

28



29

Example: Chord Routing [see 
paper for details]
 A node s’s ith neighbor has the ID that is equal to  s+2i

or is the next largest ID (mod ID space), i≥0

 To reach the node handling ID t, send the message to 
neighbor #log2(t-s)

 Requirement: each node s must know about the next 
node that exists clockwise on the Chord (0th neighbor)

 Set of known neighbors called a finger table



Chord Routing (cont’d)



Chord Routing (cont’d)



32



33

DHT API

application

DHT substrate
API

application

DHT substrate
API

overlay
network

key
responsible
node

each data item (e.g., file or metadata 

pointing to file copies) has a key 



34

DHT Layered Architecture

TCP/IP

DHT

Network 

storage

Event 

notification

Internet

P2P substrate 

(self-organizing

overlay network)

P2P application layer?



35



BitTorrent-like systems

 File split into many smaller pieces
 Pieces are downloaded from both seeds and downloaders
 Distribution paths are dynamically determined

 Based on data availability

Arrivals

Departures

Downloader

Downloader

Downloader

Downloader

Seed

Seed

Download time

Seed residence 

time

Torrent
(x downloaders; y seeds)

36



File distribution: BitTorrent 

tracker: tracks peers 
participating in torrent

torrent: group of 
peers exchanging  
chunks of a file

obtain list
of peers

trading 
chunks

peer

 P2P file distribution

37



Download using BitTorrent 
Background: Incentive mechanism
 Establish connections to large set of peers

 At each time, only upload to a small (changing) set of peers

 Rate-based tit-for-tat policy
 Downloaders give upload preference to the downloaders 

that provide the highest download rates

Highest download rates

Optimistic unchoke

Pick top four

Pick one at random

38



Download using BitTorrent 
Background: Piece selection

 Rarest first piece selection policy
 Achieves high piece diversity

 Request pieces that
 the uploader has;
 the downloader is interested (wants); and
 is the rarest among this set of pieces

Peer 1:

Peer N : 

Peer 2:

……

Pieces in neighbor set:

1 2 3 k K

1 2 3 k K

1 2 3 k K

1 2 3 k K

(1) (2) (1) (2) (2) (3) (2)
……

……

……

from

to

39



40



Background
Peer discovery in BitTorrent

 Torrent file
 “announce” URL

 Tracker
 Register torrent file

 Maintain state information

 Peers
 Obtain torrent file

 Announce 

 Report status

 Peer exchange (PEX)

 Issues
 Central point of failure

 Tracker load
Swarm = Torrent

41



Background
Multi-tracked torrents

 Torrent file
 “announce-list” URLs

 Trackers
 Register torrent file

 Maintain state information

 Peers
 Obtain torrent file

 Choose one tracker at random

 Announce 

 Report status

 Peer exchange (PEX)

 Issue
 Multiple smaller swarms

SwarmTorrent
SwarmTorrent

42



Tracker-less torrents

 Combine DHTs and BT … [notes on board]

43


