
INTRODUCTION TO LAB 2
AND

SOCKET PROGRAMMING

Vengatanathan Krishnamoorthi , Minh-Ha Le

BEFORE WE
START ...

Soft deadline for lab 2: Apr 21

Finish assignment 1 as soon as
possible if you have not yet.

Hard deadline for
assignments: May 27

Check with the TA if you plan
to use languages other than
those prescribed

WHAT WILL
WE DO IN

LAB 2?

• Goals:

• Learn about WWW
and HTTP

• Learn TCP/IP socket
programming to
understand HTTP and
WWW better

• Build a simple proxy

WHAT IS
WWW?

It is a world-wide system of
interconnected servers
which distribute a special
type of document.

Documents are marked-up
to indicate formatting
(Hypertexts)

This idea has been extended
to embed multimedia and
other content within the
marked-up page.

WHAT IS
HTTP?

HTTP is WWW's application layer
protocol.

HyperText Transfer Protocol
(HTTP) to transfer HyperText
Markup (HTML) pages and
embedded objects.

Works on a client-server paradigm.

Needs reliable transport mechanism
(TCP).

HTTP

Client

Server

Router

HTTP

Client

Server

Router

Note: HTTP server always runs on port 80

HTTP

Client

Server

Router

Note: HTTP server always runs on port 80

Note: Client can use any unrestricted port
Generally >1024

PROXY

Acts as intermediary between client and server.

BENEFITS OF
A PROXY

Hide your internal network
information (such as host names and
IP addresses).

You can set the proxy to require user
authentication.

The proxy provides advanced logging
capabilities.

Proxy helps you control which
services users can access.

Proxy-caches can be used to save
bandwidth.

HTTP WITH PROXY

Client

Server

Router

Note: HTTP server always runs on port 80

Note: Client can use any unrestricted port
Generally >1024

Proxy

Proxy listens on a port (>1024) and talks to server on
another (>1024)

WHAT IS A PORT?

• A port is an application-specific or process-specific software
construct serving as a communications endpoint.

WHAT IS A PORT?

• A port is an application-specific or process-specific software
construct serving as a communications endpoint.

• The purpose of ports is to uniquely identify different applications
or processes running on a single computer and thereby enable
them to share a single physical connection to a packet-switched
network like the Internet.

PORT CONT

• Port only identifies processes/applications.

• With regard to the Internet, ports are always used together with
IP.

• Notation 192.168.1.1:80

IP address Transport protocol port
UDP/TCP

SOCKET
PROGRAMMING

These are software
constructs used to create
ports and perform
operations on them.

It is a way to speak to
other programs using
standard Unix file
descriptors.

We will talk about
these types of
sockets:

Datagram
socket
Stream
socket
SSL sockets

DATAGRAM
SOCKETS

They are connectionless

Do not guarantee in order
delivery

No form of loss recovery

No congestion control

No flow control

Uses different calls (sendto and
receivefrom)

DATAGRAM
SOCKETS

They are connectionless

Do not guarantee in order delivery

No form of loss recovery

No congestion control

No flow control

Uses different calls (sendto and
receivefrom)

Datagram sockets use UDP

STREAM
SOCKETS

Connection oriented sockets

In order and guaranteed delivery

Error identification and recovery

Congestion control

Flow control

Stream sockets use TCP protocol

SSL sockets are similar to stream sockets, but
include functions to handle encryption

SOCKET
PROGRAMMING

CALLS

• getaddrinfo()

• Get address information

• Takes as input

• Host name

• Service type (HTTP) or only port number
if local

• Information about IP family(v4 or v6), type
of socket. (struct addrinfo)

• Returns

• A pointer to a linked list. Lets call this
'result'

SOCKET
PROGRAMMING

CALLS

• socket()

• Takes as input

• Address family

• Socket type

• Protocol

• Returns

• Socket object

SOCKET
PROGRAMMING

CALLS

• bind()

• Takes as input

• Address information obtained from
getaddrinfo()

• What does this do?

• Associate the socket with a port number

SOCKET
PROGRAMING

CALLS

• listen()

• Takes as input: None

• Setting socket object on listening mode

• This must run at the server side to listen
to incoming connection

SOCKET
PROGRAMING

CALLS

• connect()

• Takes as input

• Address information obtained from
getaddrinfo()

• What does this do?

• Attempts to setup a connection with the
other end

SOCKET
PROGRAMING

CALLS

• accept()

• Takes as input

• Socket object

• Address info

• Reads through the backlog and picks one
from the list to connect to it.

• Runs at the server side

SOCKET
PROGRAMING

CALLS

• send()
• Takes as input

• Socket object

• Message

• Length

• Returns

• Number of bytes sent

• Send is always best effort. If it cant send
the whole message, the value returned is
smaller.

SOCKET
PROGRAMING

CALLS

• recv()

• Takes as input

• Socket object

• Buffer

• Max buffer length

• Returns

• Number of bytes received

• Or -1 on error

SOCKET
PROGRAMING

CALLS

• close()

• Takes as input

• Socket object

• Closes the stream socket (TCP
connection tear down)

BROWSER CONFIGURATION

● Proxy listens on a particular port

127.0.0.1

Proxy's port number

Make sure it is blank

HTTP BASICS

• Recollect lab 1. It contains things that you need in lab 2.
• HTTP request

• Get

• Syn, SynAck, Ack

HTTP BASICS

• HTTP response

• OK

HTTP BASICS

HTTP 1.0 vs HTTP 1.1

• Many differences read
http://www8.org/w8-papers/5c-
protocols/key/key.html

• For this assignment
• Connection: close

• Handshake-Get-response-OK-
Teardown

• Connection: keep-alive
• Handshake-Get-response-OK-

wait-Get-response

What should you use for the
proxy?

http://www8.org/w8-papers/5c-protocols/key/key.html

HOW TO
HANDLE

CONNECTIONS

With connection: keep-alive,
the connection is kept open.
You are responsible to figure
out when the response is
completed.

With connection: close, the
server closes the connection
after the response is sent.

HOW TO
HANDLE

CONNECTIONS

With connection: keep-alive,
the connection is kept open.
You are responsible to figure
out when the response is
completed.

With connection: close, the
server closes the connection
after the response is sent.

How can you enforce
connection: close on HTTP
1.1?

ASSIGNMENT 2 DESCRIPTION

• You are to develop a “Fake News” proxy that can modify the
content sent from the server before returning to the browser.

• Build a proxy to which a user can connect to

• The proxy connects to the server on the user's behalf (recollect
how proxy works)

• Proxy receives the response from the server

• Alters any occurrences of Smiley and Stockholm

• Redirects the (potentially) altered content to the user

ASSIGNMENT 2 REQUIREMENTS

• • Handles simple HTTP GET interactions between client and
server

• Alters any text occurrences of “Smiley” and “Stockholm”

• Replaces any images of Smiley

• Uses at least one TCP socket

• Imposes no limit on the size of the transferred HTTP data

• Uses only basic libraries (e.g. socket, threading, time, os, sys
modules for Python should be enough)

• Works with all web browser and systems (HTTP only)

GENERAL OVERLAY

Client

Server

Proxy

Server sideClient side

Server side: listens on a port, accepts, receives, forwards to client side

GENERAL OVERLAY

Client

Server

Proxy

Server sideClient side

Client side: connects to the server, send request, receive response,
Forwards to server side

GENERAL OVERLAY

Client

Server

Proxy

Server sideClient side

CONTENT
ALTERING

Need to be able to filter
based on content.

In which of the two halves of
the proxy will you implement
content altering ?

How to actually do content
altering ?

CONTENT
ALTERING

Response from the server comes in
segments

Remember TCP segmentation?

Reconstruct the message in a temporary
buffer

No dynamic sizing of buffer, chose a
value (using debug info) and stick with it

Do not type cast non-text data

Then run filtering only on the text
message

TEXT VS
OTHER

BINARY DATA

What is the requirement for
filtering with regard to binary
data?
• Only that you have to be smart in

handling any data type

What will happen if you attempt
to reconstruct an image or
video and try to filter it?

Solutions?

TEXT VS BINARY DATA

• Content-type header

• Differentiate content type

• Run/don't run filtering

• Send data or block the client

HOW TO BLOCK SPECIFIC CONTENT

● You are supposed to return a specific response based on content filtering

HTTP REDIRECT

● If filtering confirms presence of inappropriate words

• HTTP/1.1 301 Moved Permanently

● Else send response

DEBUGGING ADVICE

• Stick to simple web pages initially

• Debug incrementally

• Check and double check request string for formatting and
completeness

• Source of many errors like 'server closed connection unexpectedly'

• If developing on own computers, use wireshark to debug. Can save
a lot of time!

DEBUGGING ADVICE

• HTTP vs HTTPS

• Requirements do not ask for a proxy which works with HTTPS

• Avoid testing on any site to which you are signed in

• Restrict yourselves to simple sites and basic test cases

DEBUGGING ADVICE

• Header manipulation

• First thing to check at a proxy is the URL that it sends out to the server

• It might require different manipulations based on the site. Be sure that
you test for all sites mentioned in the test scenario

• If you change some fields in the header, the packet length has to be
changed or brought back to the original length

THE END

Question?

