
Branching time – CTL:
• EF(Fail) = E(tt U Fail)

• AG(Req => AF(Ack))

=!(EF(!(!Req or AF(Ack)))

=!(EF(Req and EG(!Ack))

=!(E(tt U (Req and EG(! Ack))

• AG(AF(DeviceEnabled))

=!EF!(AF(DeviceEnabled))

=!EF(EG!(DeviceEnabled))

=!E(tt U (EG(! DeviceEnabled)))

• AG (EF (Restart))

= !EF!(EF(Restart))

= !E(tt U (!EF(Restart)))
= !E(tt U (!E(tt U Restart))

Mutual exclusion

Part A

• Mutual exclusion phi_mx= G(!@p2 or !@q2)

• Starvation freedom phi_eat= G(@p1 => F @p2)

• Let Sigma = Set of subsets of the union of atomic propositions and their negations. For

instance, the element {!@p2,!@p3,w0=1} in Sigma captures all configurations where the

state of process p is neither p2 nor p3 and where the value of variable w0 is 1.

A Büchi automaton for phi_eat:

Two states: s0 (initial and accepting) and s1 (not accepting):

o s0 to s0 on any element in Sigma except those including {!@p1} (intuitively, capture

any configuration except those satisfying “!@p1”).

o s0 to s1 on any element in Sigma including {@p1}.

o s1 to s1 on any element in Sigma including {!@p2}.

o s1 to s0 on any element in Sigma including @p2.

Infinite words accepted by the automaton have to visit the accepting state s0

infinitely often. They do that by either never witnessing a configuration where @p1

holds (process p is interested in accessing its critical section), or by always

witnessing a configuration where @p2 holds (process p at its critical section)

sometime after they witness a configuration where @p1 holds.

!@p2

!@p1 @p2

@p1

 S0 S1

Part B
The condition on the scheduler corresponds to “weak fairness”: the scheduler should not ignore a

continuously enabled transition.

Suppose @p1 is true (we are at a configuration where p wants to access its critical section). We show

@p2 will be eventually true.

P is the only process writing to w0. All incoming transitions to p1 assign 1 to w0. So w0 is 1.

If variable w1 is continuously 0, by fairness, t12 should be taken.

Suppose w1 is/becomes 1 while p is scheduled at p1 (and hence w0 is 1). Either t is 1 or 0. If t is 0

then q will eventually block at q6 after it assigned w1 to 0 (hence continuously enabling t12 and

allowing p to access p2). If t is 1, p will eventually block at p6 after it assigned 0 to w0 (resulting q

accessing q2 and assigning t to 0).

3. Symbolic representation

4. Partial and total correctness
Use {Inv: 0 <= x <= 100 and y = 2*x} as an invariant:

Partial correctness:
1. Q => Inv: (x=0 and y=0) => (0 <= x <= 100 and y = 2*x)

2. {Inv and 0 < 100} x:= x+1; y:= y+2 {Inv}:

wp(‘x:= x+1; y:= y+2’, 0 <= x <= 100 and y = 2*x)

= wp(‘x:= x+1’, 0 <= x <= 100 and y+2=2*x)

= 0 <= x+1 <= 100 and y+2 = 2*(x + 1)

= -1 <= x < 100 and y=2*x

Indeed: (0 <= x <= 100 and y = 2*x and x < 100) => (-1 <= x < 100 and y=2*x)

3. (Inv and not (x < 100)) => Q:

Inv and not (x < 100)

= 0 <= x <= 100 and y = 2*x and x >= 100

= (x = 100 and y = 2*x)

=> y = 200 => y < 201 = Q

So, the program is partially correct.

Termination: variant: v= 100 – x

4. (Inv and x < 100) => (v > 0):

(0 <= x <= 100 and y = 2*x and x < 100) => (x < 100) => (100 – x > 0) => (v > 0)

5. {Inv and x < 100 and 100 – x = v0} x:= x+1; y:=y+1 {v < v0}

We have :

wp(‘x:= x+1; y:= y+2’, v < v0)

= wp(‘x:= x+1; y:= y+2’, 100 - x < v0)

= wp(‘x:= x+1’, 100 – x < v0)

= 100 – x < v0 + 1

In addition:

Inv and x < 100 and 100 – x = v0 => 100 – x = v0

Since:

(100 – x = v0) => (100 – x < v0 +1) we get that:

{Inv and x < 100 and 100 – x = v0} x:= x+1; y:=y+1 {v < v0}

So, the program terminates.

Abstract interpretation
1. Fixpoint :

//x: [-oo,+oo]
L1. x:= 0
//x: [] widening [0,0]
L2. x:= x + 1
//x: [] widening [1,1]
L3. if x < 100 goto L2
//x: []
L4. nop
//x: []
L5. End

//x: [-oo,+oo]
L1. x:= 0
//x: [0,0]
L2. x:= x + 1
//x: [] widening [1,1]
L3. if x < 100 goto L2
//x: []
L4. nop
//x: []

L5. End

//x: [-oo,+oo]
L1. x:= 0
//x: [0,0]
L2. x:= x + 1
//x: [1,1] widening [2,2]
L3. if x < 100 goto L2

//x: []
L4. nop
//x: []
L5. end

//x: [-oo,+oo]
L1. x:= 0
//x: [0,0]
L2. x:= x + 1
//x: [1,+oo]
L3. if x < 100 goto L2
//x: [] widening [100,+oo]
L4. nop
//x: []
L5. end

//x: [-oo,+oo]
L1. x:= 0
//x: [0,0]
L2. x:= x + 1
//x: [1,+oo]
L3. if x < 100 goto L2
//x: [100,+oo]
L4. nop
//x: [] widening [100,+oo]
L5. end

//x: [-oo,+oo]
L1. x:= 0
//x: [0,0]
L2. x:= x + 1
//x: [1,+oo]
L3. if x < 100 goto L2
//x: [100,+oo]
L4. nop
//x: [100,+oo]
L5. end

2. Some precision can be recovered using narrowing.

//x: [-oo,+oo]
L1. x:= 0
//x: [0,0]
L2. x:= x + 1
//x: [1,+oo] narrowing [1,100]
L3. if x < 100 goto L2
//x: [100,+oo]
L4. nop
//x: [100,+oo]
L5. End

//x: [-oo,+oo]
L1. x:= 0
//x: [0,0]
L2. x:= x + 1
//x: [1,100]
L3. if x < 100 goto L2
//x: [100,+oo] narrowing [100,100]
L4. nop
//x: [100,+oo]
L5. End

//x: [-oo,+oo]
L1. x:= 0
//x: [0,0]
L2. x:= x + 1
//x: [1,100]

L3. if x < 100 goto L2
//x: [100,100]
L4. nop
//x: [100,+oo] narrowing [100,100]
L5. End

//x: [-oo,+oo]
L1. x:= 0
//x: [0,0]
L2. x:= x + 1
//x: [1,100]
L3. if x < 100 goto L2
//x: [100,100]
L4. nop
//x: [100,100]
L5. end

