
Branching time – CTL: 
• EF(Fail) = E(tt U Fail) 

 

• AG(Req => AF(Ack))  

=!(EF(!(!Req or AF(Ack))) 

=!(EF(Req and EG(!Ack)) 

=!(E(tt U (Req and EG(! Ack)) 
 

• AG(AF(DeviceEnabled)) 

=!EF!(AF(DeviceEnabled)) 

=!EF(EG!(DeviceEnabled)) 

=!E(tt U (EG(! DeviceEnabled))) 
 

• AG (EF (Restart))  

= !EF!(EF(Restart)) 

= !E(tt U (!EF(Restart))) 
= !E(tt U (!E(tt U Restart)) 

Mutual exclusion 

Part A 

• Mutual exclusion phi_mx= G(!@p2 or !@q2) 

• Starvation freedom phi_eat= G(@p1 => F @p2) 

• Let Sigma = Set of subsets of the union of atomic propositions and their negations. For 

instance, the element {!@p2,!@p3,w0=1} in Sigma captures all configurations where the 

state of process p is neither p2 nor p3 and where the value of variable w0 is 1. 

A Büchi automaton for phi_eat: 

Two states: s0 (initial and accepting) and s1 (not accepting): 

o s0 to s0 on any element in Sigma except those including {!@p1} (intuitively, capture 

any configuration except those satisfying “!@p1”). 

o s0 to s1 on any element in Sigma including {@p1}.  

o s1 to s1 on any element in Sigma including {!@p2}. 

o s1 to s0 on any element in Sigma including @p2. 

 

 

 

 

 

 

 

 

 

Infinite words accepted by the automaton have to visit the accepting state s0 

infinitely often. They do that by either never witnessing a configuration where @p1 

holds (process p is interested in accessing its critical section), or by always 

witnessing a configuration where @p2 holds (process p at its critical section) 

sometime after they witness a configuration where @p1 holds. 
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Part B 
The condition on the scheduler corresponds to “weak fairness”: the scheduler should not ignore a 

continuously enabled transition. 

Suppose @p1 is true (we are at a configuration where p wants to access its critical section). We show 

@p2 will be eventually true. 

P is the only process writing to w0. All incoming transitions to p1 assign 1 to w0. So w0 is 1. 

If variable w1 is continuously 0, by fairness, t12 should be taken.  

Suppose w1 is/becomes 1 while p is scheduled at p1 (and hence w0 is 1). Either t is 1 or 0. If t is 0 

then q will eventually block at q6 after it assigned w1 to 0 (hence continuously enabling t12 and 

allowing p to access p2). If t is 1, p will eventually block at p6 after it assigned 0 to w0 (resulting q 

accessing q2 and assigning t to 0).  

 

3. Symbolic representation 

 

 

 

4. Partial and total correctness 
Use {Inv: 0 <= x <= 100 and y = 2*x} as an invariant: 

Partial correctness: 
1. Q => Inv: (x=0 and y=0) => (0 <= x <= 100 and y = 2*x) 

2. {Inv and 0 < 100} x:= x+1; y:= y+2 {Inv}: 

wp(‘x:= x+1; y:= y+2’, 0 <= x <= 100 and y = 2*x)  

= wp(‘x:= x+1’, 0 <= x <= 100 and y+2=2*x) 

= 0 <= x+1 <= 100 and y+2 = 2*(x + 1) 

= -1 <= x < 100 and y=2*x 

 

Indeed: (0 <= x <= 100 and y = 2*x and x < 100) => ( -1 <= x < 100 and y=2*x) 

 



3. (Inv and not (x < 100)) => Q: 

Inv and not (x < 100)  

= 0 <= x <= 100 and y = 2*x and x >= 100 

= (x = 100 and y = 2*x) 

=> y = 200 => y < 201 = Q 

So, the program is partially correct. 

 

Termination: variant: v= 100 – x 

4. (Inv and x < 100) => (v > 0): 

(0 <= x <= 100 and y = 2*x and x < 100) => (x < 100) => (100 – x > 0) => (v > 0) 

5. {Inv and x < 100 and 100 – x = v0} x:= x+1; y:=y+1 {v < v0} 

We have : 

wp(‘x:= x+1; y:= y+2’, v < v0)  

= wp(‘x:= x+1; y:= y+2’, 100 - x < v0) 

= wp(‘x:= x+1’, 100 – x < v0) 

= 100 – x < v0 + 1 

 

In addition: 

Inv and x < 100 and 100 – x = v0 => 100 – x = v0 

 

Since:  

(100 – x = v0) => (100 – x < v0 +1) we get that: 

{Inv and x < 100 and 100 – x = v0} x:= x+1; y:=y+1 {v < v0} 

 

So, the program terminates. 

 

Abstract interpretation 
1. Fixpoint : 

//x: [-oo,+oo] 
L1. x:= 0 
//x: [] widening [0,0] 
L2. x:= x + 1 
//x: [] widening [1,1] 
L3. if x < 100 goto L2 
//x: []  
L4. nop 
//x: []  
L5. End 

-------- 

//x: [-oo,+oo] 
L1. x:= 0 
//x: [0,0] 
L2. x:= x + 1 
//x: [] widening [1,1] 
L3. if x < 100 goto L2 
//x: []  
L4. nop 
//x: []  

L5. End 

-------- 

//x: [-oo,+oo] 
L1. x:= 0 
//x: [0,0]  
L2. x:= x + 1 
//x: [1,1] widening [2,2] 
L3. if x < 100 goto L2 



//x: [] 
L4. nop 
//x: [] 
L5. end 

-------- 

//x: [-oo,+oo] 
L1. x:= 0 
//x: [0,0]  
L2. x:= x + 1 
//x: [1,+oo] 
L3. if x < 100 goto L2 
//x: [] widening [100,+oo] 
L4. nop 
//x: [] 
L5. end 

-------- 

//x: [-oo,+oo] 
L1. x:= 0 
//x: [0,0]  
L2. x:= x + 1 
//x: [1,+oo] 
L3. if x < 100 goto L2 
//x: [100,+oo] 
L4. nop 
//x: [] widening [100,+oo] 
L5. end 

-------- 

//x: [-oo,+oo] 
L1. x:= 0 
//x: [0,0]  
L2. x:= x + 1 
//x: [1,+oo] 
L3. if x < 100 goto L2 
//x: [100,+oo] 
L4. nop 
//x: [100,+oo] 
L5. end 

2. Some precision can be recovered using narrowing.  

 

 

//x: [-oo,+oo] 
L1. x:= 0 
//x: [0,0]  
L2. x:= x + 1 
//x: [1,+oo] narrowing [1,100] 
L3. if x < 100 goto L2 
//x: [100,+oo]  
L4. nop 
//x: [100,+oo] 
L5. End 

----- 

//x: [-oo,+oo] 
L1. x:= 0 
//x: [0,0]  
L2. x:= x + 1 
//x: [1,100] 
L3. if x < 100 goto L2 
//x: [100,+oo] narrowing [100,100] 
L4. nop 
//x: [100,+oo] 
L5. End 

-----  
 
//x: [-oo,+oo] 
L1. x:= 0 
//x: [0,0]  
L2. x:= x + 1 
//x: [1,100] 



L3. if x < 100 goto L2 
//x: [100,100] 
L4. nop 
//x: [100,+oo] narrowing [100,100] 
L5. End 

------- 

//x: [-oo,+oo] 
L1. x:= 0 
//x: [0,0]  
L2. x:= x + 1 
//x: [1,100] 
L3. if x < 100 goto L2 
//x: [100,100] 
L4. nop 
//x: [100,100] 
L5. end 


