Exam Software Verification

June 3, 2022

- Time kl 08.00 12.00
- Submit your answers by email to ahmed.rezine@liu.se
- This is an open book exam. You can access internet.
- It is however strictly forbidden to contact and discuss the exam, during the exam perion, with any person other than the examiner, whether the person is related to the course or not.

1 Branching time (4p)

Assume Fail, Req, Ack, DeviceEnabled and Restart are atomic propositions. Express the following CTL properties using (boolean combinations of) EG, EU and the atomic propositions:

- **EF**(Fail) (1p)
- $\mathbf{AG}(\mathtt{Req} \Rightarrow \mathbf{AF}(\mathtt{Ack}))$ (1p)
- $\mathbf{AG}(\mathbf{AF}(\texttt{DeviceEnabled}))$ (1p)
- AG(EF(Restart)) (1p)

2 Mutual exclusion (8p)

Assume the following description of Dekker's mutual exclusion algorithm for two processes \mathbf{p} and \mathbf{q} . State $\mathbf{p0}$ (resp. $\mathbf{q0}$) is the initial state of process \mathbf{p} (resp. process \mathbf{q}). State $\mathbf{p2}$ (resp. $\mathbf{q2}$) is the critical section of process \mathbf{p} (resp. process \mathbf{q}). Variable $\mathbf{w0}$ is only written by process \mathbf{p} . It is 1 when \mathbf{p} wants to access its critical section ($\mathbf{p2}$). Similarly, variable $\mathbf{w1}$ is only written by process \mathbf{q} . It is 1 when \mathbf{q} wants to access its critical section ($\mathbf{q2}$). Variables $\mathbf{w0}$, $\mathbf{w1}$, \mathbf{t} take their values in $\{\mathbf{0,1}\}$. Variable \mathbf{t} is read and written by both processes. Transitions are either tests (e.g. $\mathbf{w1=0}$ for transition $\mathbf{t12}$) or assignments (e.g. $\mathbf{w1} := \mathbf{0}$ for transition $\mathbf{s56}$).

2.1 Part A

In the following, we use @pi to mean the proposition stating process p is at state pi. We do the same for process q. For instance, the proposition @q2 is true in a configuration when process q is at its critical section. We use the following set of atomic propositions:

- Location propositions: $\{@\mathbf{pi} \mid 0 \le \mathbf{i} \le 7\} \cup \{@\mathbf{qi} \mid 0 \le \mathbf{i} \le 7\}$
- Values' propositions: $\{\mathbf{x} = \mathbf{v} \mid \mathbf{x} \text{ in } \{\mathbf{w0}, \mathbf{w1}, \mathbf{t}\} \text{ and } \mathbf{v} \text{ in } \{\mathbf{0}, \mathbf{1}\}\}$

Answer the following questions:

• Write an LTL formula φ_{mx} that states that mutual exclusion is always respected. (2p)

- Write an LTL formula φ_{eat} that states that each time process **p** wants to access its critical section it eventually succeeds. (2p)
- Give a Büchi automaton for the formula φ_{eat} . Explain it. (2p)

2.2 Part B

We assume the transitions are atomic. Transitions from different processes can be interleaved (a scheduler schedules one process at a time to execute a number of transitions). Transitions corresponding to assignements (e.g., **t01** or **s71**) are enabled if the corresponding process is at the start of the transition (e.g., **@q7** holds for **s71**). Transitions corresponding to tests (e.g., **t14** or **s45**) are enabled if the corrsponding process is at the start of the transition and the test is true (e.g., **@q4** and **t=0** for **s45**). We write **En(t)** to mean transition **t** is enabled. We write **Ex(t)** to mean transition **t** is indeed executed. For instance **Ex(s45)** is true if **En(s45)** and process **q** moves from **q4** to **q5**. To simplify the discussion, we will hereafter discuss LTL formulas over {**En(t)** | **t** is a transition} and {**Ex(t)** | **t** is a transition}. You should not use the atomic propositions from part A. It is reasonable to assume schedulers behave "reasonably". A way to account for this assumption is to restrict runs to those satisfying a "reasonable" constraints. Consider the following constraint:

- Φ : for all transition **u** of processes **p** and **q**. GF(**!En(u)** or **Ex(u)**)
- Is restricting scheduler's behavior to Φ enough to ensure φ_{eat} ? explain. (2p)

3 Symbolic representation (6p)

Consider the formula $f(v_0, v'_0, v_1, v'_1, v_2, v'_2) = (v'_0 = \neg v_0) \land (v'_1 = v_0 \oplus v_1) \land (v'_2 = (v_0 \land v_1) \oplus v_2)$ where $v_0, v'_0, v_1, v'_1, v_2$ and v'_2 are boolean variables and \oplus is exclusive or. Give a BDD for f assuming the order $v_0 < v'_0 < v_1 < v'_1 < v_2 < v'_2$ (i.e., starting from the root, variable v_0 appears first, then variable v_1, \ldots etc).

4 Partial and total correctness (6p)

Consider the following simple program:

$$\begin{array}{ll} \{Q: x = 0 \land y = 0\} \\ \mathbf{do} & x < 100 \quad \rightarrow \quad x := x + 1; y := y + 2 \\ \mathbf{od} \\ \{R: y < 201\} \end{array}$$

• Find a suitable invariant and use it to show that if the loop terminates after starting from a state satisfying Q then it terminates in a state satisfying R (4p) • Find a suitable variant function and use it to show the loop terminates. (2p)

5 Abstract Interpretation (6p)

- We adopt the following widening operator ∇ for the interval domain:
 - $[a,b] \nabla \bot = \bot \nabla [a,b] = [a,b]$
 - $[a, b] \nabla [c, d] = [l, r]$ with
 - l = a if $a \leq c$ and $l = -\infty$ otherwise
 - r = b if $b \ge d$ and $r = +\infty$ otherwise
- Give a sequence of intervals obtained durinf a fixpoint computation where you systematically use widening as a join operator. (4p)
- The obtained fixpoint does not establish that $x \le 101$ at line L4. Describe how such a fact can be established using the interval domain. (2p)

```
//x: T = [-oo, +oo]
L1. x:= 0

//x: \bot
L2. x:= x + 1

//x: \bot
L3. if x < 100 goto L2

//x: \bot
L4. nop

//x: \bot
L5. end
```