
Exam Software Verification

June 3, 2022

• Time kl 08.00 - 12.00

• Submit your answers by email to ahmed.rezine@liu.se

• This is an open book exam. You can access internet.

• It is however strictly forbidden to contact and discuss the exam, during
the exam perion, with any person other than the examiner, whether the
person is related to the course or not.

1

1 Branching time (4p)

Assume Fail, Req, Ack, DeviceEnabled and Restart are atomic propositions.
Express the following CTL properties using (boolean combinations of) EG, EU
and the atomic propositions:

• EF(Fail) (1p)

• AG(Req⇒ AF(Ack)) (1p)

• AG(AF(DeviceEnabled)) (1p)

• AG(EF(Restart)) (1p)

2 Mutual exclusion (8p)

Assume the following description of Dekker’s mutual exclusion algorithm for
two processes p and q. State p0 (resp. q0) is the initial state of process p
(resp. process q). State p2 (resp. q2) is the critical section of process p (resp.
process q). Variable w0 is only written by process p. It is 1 when p wants to
access its critical section (p2). Similarly, variable w1 is only written by process
q. It is 1 when q wants to access its critical section (q2). Variables w0, w1,
t take their values in {0,1}. Variable t is read and written by both processes.
Transitions are either tests (e.g. w1=0 for transition t12) or assignments (e.g.
w1 := 0 for transition s56).

2.1 Part A

In the following, we use @pi to mean the proposition stating process p is at
state pi. We do the same for process q. For instance, the proposition @q2
is true in a configuration when process q is at its critical section. We use the
following set of atomic propositions:

• Location propositions: {@pi | 0 ≤ i ≤ 7} ∪ {@qi | 0 ≤ i ≤ 7}

• Values’ propositions: {x = v | x in {w0,w1, t} and v in {0,1}}

Answer the following questions:

• Write an LTL formula ϕmx that states that mutual exclusion is always
respected. (2p)

2

• Write an LTL formula ϕeat that states that each time process p wants to
access its critical section it eventually succeeds. (2p)

• Give a Büchi automaton for the formula ϕeat. Explain it. (2p)

2.2 Part B

We assume the transitions are atomic. Transitions from different processes can
be interleaved (a scheduler schedules one process at a time to execute a number
of transitions). Transitions corresponding to assignements (e.g., t01 or s71) are
enabled if the corresponding process is at the start of the transition (e.g., @q7
holds for s71). Transitions corresponding to tests (e.g., t14 or s45) are enabled
if the corrsponding process is at the start of the transition and the test is true
(e.g., @q4 and t=0 for s45). We write En(t) to mean transition t is enabled.
We write Ex(t) to mean transition t is indeed executed. For instance Ex(s45)
is true if En(s45) and process q moves from q4 to q5. To simplify the discus-
sion, we will hereafter discuss LTL formulas over {En(t) | t is a transition} and
{Ex(t) | t is a transition}. You should not use the atomic propositions from
part A. It is reasonable to assume schedulers behave “reasonably”. A way to
account for this assumption is to restrict runs to those satisfying a “reasonable”
constraints. Consider the following constraint:

Φ: for all transition u of processes p and q. GF(!En(u) or Ex(u))

• Is restricting scheduler’s behavior to Φ enough to ensure ϕeat? explain.
(2p)

3 Symbolic representation (6p)

Consider the formula f(v0, v
′
0, v1, v

′
1, v2, v

′
2) = (v′0 = ¬v0)∧(v′1 = v0⊕v1)∧(v′2 =

(v0 ∧ v1) ⊕ v2) where v0, v
′
0, v1, v

′
1, v2 and v′2 are boolean variables and ⊕ is

exclusive or. Give a BDD for f assuming the order v0 < v′0 < v1 < v′1 < v2 < v′2
(i.e., starting from the root, variable v0 appears first, then variable v1, ... etc).

4 Partial and total correctness (6p)

Consider the following simple program:

{Q : x = 0 ∧ y = 0}
do x < 100 → x := x + 1; y := y + 2
od
{R : y < 201}

• Find a suitable invariant and use it to show that if the loop terminates after
starting from a state satisfying Q then it terminates in a state satisfying
R (4p)

3

• Find a suitable variant function and use it to show the loop terminates.
(2p)

5 Abstract Interpretation (6p)

We adopt the following widening operator ∇ for the interval
domain:

• [a, b]∇⊥ = ⊥∇[a, b] = [a, b]

• [a, b]∇[c, d] = [l, r] with

• l = a if a ≤ c and l = −∞ otherwise

• r = b if b ≥ d and r = +∞ otherwise

• Give a sequence of intervals obtained durinf a fixpoint computation where
you systematically use widening as a join operator. (4p)

• The obtained fixpoint does not establish that x <= 101 at line L4. De-
scribe how such a fact can be established using the interval domain. (2p)

//x: > = [−oo,+oo]
L1. x:= 0
//x: ⊥
L2. x:= x + 1
//x: ⊥
L3. if x < 100 goto L2
//x: ⊥
L4. nop
//x: ⊥
L5. end

4

