
Software verification Spring 2024

Homework 4

Ahmed Rezine

Problem 1
We adopt the following widening operator ∇ for the interval domain:

• [a, b]∇⊥ = ⊥∇[a, b] = [a, b]

• [a, b]∇[c, d] = [l, r] with

• l = a if a ≤ c and l = −∞ otherwise

• r = b if b ≥ d and r = +∞ otherwise

• Give a sequence of intervals obtained during a fix-
point computation where you systematically use
widening as a join operator.

• (optional) The obtained fixpoint does not establish
that x <= 10 at line L3. Describe how such a fact
can be established using the interval domain.

//x: ⊤ = [−oo,+oo]
L1. x:= 0
//x: ⊥
L2. x:= x + 1
//x: ⊥
L3. nop
//x: ⊥
L4. if x < 10 goto L2
//x: ⊥
L5. end

Problem 2

Check the README.md file under the cpachecker folder (see course page) and go through
https://sosy-lab.gitlab.io/research/tutorials/CPAchecker.

• Follow the tutorial for the two examples (example.c and example bug.c) with the default
configurations and properties. Use the predicateAnalysis-PredAbsRefiner-SBE
configuration instead of the default one. Checkout the output/abstractions.txt
file.

• Write your own version of the lock program from the lecture and verify it using the
predicateAnalysis-PredAbsRefiner-SBE for predicate abstraction. Check-
out the output/abstractions.txt file.

• Choose a programs from https://github.com/sosy-lab/sv-benchmarks/
tree/master/c/loop-crafted (the sv-benchmarks are used in the software veri-
fication competition https://sv-comp.sosy-lab.org/2021/). Understand what
the program is about and try to verify using some CPAchecker configuration.

• (Optional) Write a program of your own (of the same level of complexity as example.c).
Try to verify it with CPAchecker. Introduce a bug and try to get CPAchecker to exhibit an
error trace.

Page 1 of 1

https://sosy-lab.gitlab.io/research/tutorials/CPAchecker
https://github.com/sosy-lab/sv-benchmarks/tree/master/c/loop-crafted
https://github.com/sosy-lab/sv-benchmarks/tree/master/c/loop-crafted
https://sv-comp.sosy-lab.org/2021/

