
Software Verification

Partial and Total Correctness (II)

Ahmed Rezine

IDA, Linköpings Universitet

Spring 2024



Outline

Hoare Triples and Deductive Reasoning

Weakest preconditions

Hoare Triples for Loops

Further readings



Outline

Hoare Triples and Deductive Reasoning

Weakest preconditions

Hoare Triples for Loops

Further readings



Hoare Triples and Partial Correctness
I a Hoare triple fPg stmt fRg consists in:

I a predicate pre-condition P
I a program stmt,
I a predicate post-condition R

I intuitively, fPg stmt fRg holds if whenever P holds and stmt
is executed and terminates (partial correctness), then R
holds after stmt terminates.
(i.e., (P and stmt terminates) implies (R after termination)).

I All following triples hold (i.e., are valid):
I ftrueg x := y fx = yg
I fx = 1 ^ y = 2g x := y fx = 2g
I fx � 1g y := 2 fx = 0 _ y � 10g
I fx � 1g if(y = 2) then x := 0 fx � 0g
I ffalseg x := 1 fx = 2g
I ftrueg abort ffalseg
I fx = 10g skip fx = 10g
I fi = 0g while(i! = 10)i := i + 1; fi = 10g
I fi � 0g while(i! = 10)i := i + 1; fi = 10g



Hoare Triples and Partial Correctness

P0 =) P fPg stmt fQg Q =) Q0

fP0g stmt fQ0g

fPg stmt fQg fQg stmt0 fRg
fPg stmt; stmt0 fRg

fP ^ Bg stmt fQg fP ^ :Bg stmt0 fQg
fPg if B then stmt else stmt0 fQg fP[e=x ]g x := e fPg

fP ^ Bg stmt fPg
fPg (while (B) fstmtg) fP ^ :Bg



Outline

Hoare Triples and Deductive Reasoning

Weakest preconditions

Hoare Triples for Loops

Further readings



Weakest precondition

I The weakest precondition of a predicate R wrt. a program
stmt, written wp (stmt;R), is the union of all preconditions
that guarantee termination of stmt and that ensure R holds
after its execution.

I Observe fwp (stmt;R)g stmt fRg and wp (stmt;R) is unique.
I wp (stmt;R) transforms predicate R wrt. stmt. It is said to

be a predicate transformer.
I wp (x := x + 1; x � 1) = (x � 0). Observe (x � 5), (x = 6),

(x � 0 ^ y = 8) are all valid preconditions, but they are not
weaker than x � 0.



Weakest precondition of assignments

I wp (x := e;R) = R[e=x ] replaces occurrences of x in R by e.
I examples:

I wp (x := 3; x = 5) = (x = 5)[x=3] = (3 = 5) = false
I wp (x := 3; x � 0) = (x � 0)[x=3] = (3 � 0) = true
I wp (x := y + 5; x � 0) = (x � 0)[x=y + 5] = (y + 5 � 0)
I wp (x := 5 � y + 2 � z ; x + y � 0) = (x + y �

0)[x=5 � y + 2 � z ] = (6 � y + 2 � z � 0)



Weakest precondition of sequences

I Assume a sequence of two instructions stmt; stmt 0, for
example x := 2 � y ; y := x + 3 � y ;

I the weakest precondition is given by:
wp (stmt; stmt 0;R) = wp (stmt;wp (stmt 0;R)),

I

wp (x := 2 � y ; y := x + 3 � y ; y > 10)
= wp (x := 2 � y ;wp (y := x + 3 � y ; y > 10))
= wp (x := 2 � y ; (y > 10)[y=x + 3 � y ])
= wp (x := 2 � y ; x + 3 � y > 10)
= (x + 3 � y > 10)[x=2 � y ]
= (2 � y + 3 � y > 10)
= y > 2



Weakest precondition of conditionals

I Assume a conditional (if(B) then stmt else stmt 0), for
example (if(x > y) then z := x else z := y)

I The weakest precondition is given by: 
wp ((if(B) then stmt else stmt 0);R)

= (B ) wp (stmt;R)) ^ (:B ) wp (stmt 0;R))

!

I For example,
wp ((if(x > y) then z := x else z := y); z � 10)

= (x > y ) wp (z := x ; z � 10)) ^ (x � y ) wp (z := y ; z � 10))
= (x > y ) x � 10) ^ (x � y ) y � 10)

,

I More general:

wp

0
B@
0
B@

if B1 ! stmt1
� B2 ! stmt2
fi

1
CA ;R

1
CA

=
(B1 _ B2) ^ (B1 ) wp (stmt1;R)) ^ (B2 ) wp (stmt2;R))



Outline

Hoare Triples and Deductive Reasoning

Weakest preconditions

Hoare Triples for Loops

Further readings



Hoare Triples for Loops, Partial Correctness

fInv ^ Bg stmt fInvg
fInvg (while (B) fstmtg) fInv ^ :Bg

I In order to establish fPg (while(B)dofstmtg) fRg, you will
need to find an invariant Inv such that:
I P ) Inv (Inv holds at start of the loop)
I fInv ^ Bg stmt fInvg (Inv holds after each iteration)
I (Inv ^ :B))R (At exit, Inv implies R)



Hoare Triples for Loops, Example

Show:
fQ : trueg
i := 0;
j := 0;
fP : i = 0 ^ j = 0g
while(i < 10)dof

i := i + 1;
j := j + 1;

g

fR : j = 10g

I First, show fQ : truegi := 0; j := 0fP : i = 0 ^ j = 0g
I Then for the loop:

1. P ) Inv
2. fInv ^ Bg stmt fInvg
3. (Inv ^ :B))R



Hoare Triples for Loops, Example

I To show fQ : truegi := 0; j := 0fP : i = 0 ^ j = 0g:
I show fQ : trueg =) wp (i := 0; j := 0;P):
I Assume Q, show wp (i := 0; j := 0;P) is true.
I By sequential composition: wp (i := 0; j := 0;P)

= wp (i := 0;wp (j := 0;P))
I By assignment: wp (i := 0;wp (j := 0; i = 0 ^ j = 0))

= wp (i := 0; i = 0) = true
I Hence, fQ : trueg =) wp (i := 0; j := 0; i = 0 ^ j = 0) and
fQ : truegi := 0; j := 0fP : i = j = 0g is valid.



Hoare Triples for Loops, Example

I For the loop, we need to find a suitable invariant, i.e., a
predicate that holds both at the beginning of the loop and
after each iteration of the loop and that implies the
postcondition at the end of the loop.

I Candidate invariant: Inv : i = j ^ i � 10. To establish Inv is a
suitable invariant, we prove:

1. P ) Inv : We asume i = 0 and j = 0 and prove i = j ^ i � 10
is true.

2. fInv ^ Bg stmt fInvg: we show (i = j ^ i � 10 ^ i < 10) =)
wp (i := i + 1; j := j + 1; i = j ^ i � 10). For this: assume
i = j ; i � 10; i < 10 and show
wp (i := i + 1; j := j + 1; i = j^ � 10) is true.

3. (Inv ^ :B))R: is shown by proving that
(i = j ^ j � 10 ^ :(i < 10)) =) (j = 10) (i.e., assume i = j ,
i � 10, :(i < 10) and show j = 10 is true).



Hoare Triples for Loops, Total Correctness

I fPg (while(B)dofstmtg) fRg
I Partial correctness: if we start from P and

(while(B)dofstmtg) terminates, then R terminates.
I P ) Inv
I fInv ^ Bg stmt fInvg
I (Inv ^ :B))R

I Total correctness: the loop does terminate: find a variant
function v such that:
I (Inv ^ B) ) (v > 0)
I fInv ^ B ^ v = v0g stmt fv < v0g



Hoare Triples for Loops, Example

Show termination of the loop:
fQ : trueg
i := 0; j := 0;
fP : i = 0 ^ j = 0g
while(i < 10)dof

i := i + 1;
j := j + 1;

g
fR : j = 10g

I we can use the invariant used for the first three rules (partial
correctness) (i = j ^ i � 10) and the variant (v = 10� i)

I (Inv ^ B) ) (v > 0) is established by proving
(i = j ^ i � 10 ^ i < 10) implies 10� i > 0

I fInv ^ B ^ v = v0g stmt fv < v0g is shown by proving
(i = j ^ i � 10 ^ i < 10 ^ 10� i = v0) implies
wp (i := i + 1; j := j + 1; 10� i < v0)



Examples: Termination

Show:
fQ : a � 0 ^ b � 0g
z := 0; x := a; y := b
finvP : (x � 0) ^ (z + x � y = a � b)g
fboundt : xg
while(x � 1)f

if(odd(x))fz := z + y ; g
elsefskip; g
x := x=2;
y := 2 � y ;

g

fR : z = a � bg



Dutch national flag

fP : 8i :0 � i < a:Length : (a[i ] = red _ a[i ] = white _ a[i ] = blue)g
r := 0; w := 0; b := a:Length;
while(w � b)dof

if(a[w ] = blue)thenf
a[w ]; a[b � 1] := a[b � 1]; a[w ]; b := b � 1;

gelse if(a[w ] = red)thenf
a[w ]; a[r ] := a[r ]; a[w ]; w ; r := w + 1; r + 1;

gelse if(a[w ] = white)thenf
w := w + 1;

g

g

fR :

0
B@

(8i :0 � i < r : a[i ] = red)
^ (8i :r � i < w : a[i ] = white)
^ (8i :w � i < a:Length : a[i ] = blue)

1
CA



Outline

Hoare Triples and Deductive Reasoning

Weakest preconditions

Hoare Triples for Loops

Further readings



Further readings

A. R. Bradley and Z. Manna.
(chap 5-6) The calculus of computation: decision procedures with applications to
verification.
Springer Science & Business Media, 2007.

R. Leino. et al. https://github.com/dafny-lang/dafny.
Dafny. Dafny is a verification-aware programming language., Accessed December
4, 2020.

K. R. M. Leino.
Dafny: An automatic program verifier for functional correctness.
In International Conference on Logic for Programming Artificial Intelligence and
Reasoning, pages 348–370. Springer, 2010.

https://github.com/dafny-lang/dafny

	Hoare Triples and Deductive Reasoning
	Weakest preconditions
	Hoare Triples for Loops
	Further readings

