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Hoare Triples and Partial Correctness
I a Hoare triple fPg stmt fRg consists in:

I a predicate pre-condition P
I a program stmt,
I a predicate post-condition R

I intuitively, fPg stmt fRg holds if whenever P holds and stmt
is executed and terminates (partial correctness), then R
holds after stmt terminates.
(i.e., (P and stmt terminates) implies (R after termination)).

I All following triples hold (i.e., are valid):
I ftrueg x := y fx = yg
I fx = 1 ^ y = 2g x := y fx = 2g
I fx � 1g y := 2 fx = 0 _ y � 10g
I fx � 1g if(y = 2) then x := 0 fx � 0g
I ffalseg x := 1 fx = 2g
I ftrueg abort ffalseg
I fx = 10g skip fx = 10g
I fi = 0g while(i! = 10)i := i + 1; fi = 10g
I fi � 0g while(i! = 10)i := i + 1; fi = 10g



Hoare Triples and Partial Correctness

P0 =) P fPg stmt fQg Q =) Q0

fP0g stmt fQ0g

fPg stmt fQg fQg stmt0 fRg
fPg stmt; stmt0 fRg

fP ^ Bg stmt fQg fP ^ :Bg stmt0 fQg
fPg if B then stmt else stmt0 fQg fP[e=x ]g x := e fPg

fP ^ Bg stmt fPg
fPg (while (B) fstmtg) fP ^ :Bg
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Weakest precondition

I The weakest precondition of a predicate R wrt. a program
stmt, written wp (stmt;R), is the union of all preconditions
that guarantee termination of stmt and that ensure R holds
after its execution.

I Observe fwp (stmt;R)g stmt fRg and wp (stmt;R) is unique.
I wp (stmt;R) transforms predicate R wrt. stmt. It is said to

be a predicate transformer.
I wp (x := x + 1; x � 1) = (x � 0). Observe (x � 5), (x = 6),

(x � 0 ^ y = 8) are all valid preconditions, but they are not
weaker than x � 0.



Weakest precondition of assignments

I wp (x := e;R) = R[e=x ] replaces occurrences of x in R by e.
I examples:

I wp (x := 3; x = 5) = (x = 5)[x=3] = (3 = 5) = false
I wp (x := 3; x � 0) = (x � 0)[x=3] = (3 � 0) = true
I wp (x := y + 5; x � 0) = (x � 0)[x=y + 5] = (y + 5 � 0)
I wp (x := 5 � y + 2 � z ; x + y � 0) = (x + y �

0)[x=5 � y + 2 � z ] = (6 � y + 2 � z � 0)



Weakest precondition of sequences

I Assume a sequence of two instructions stmt; stmt 0, for
example x := 2 � y ; y := x + 3 � y ;

I the weakest precondition is given by:
wp (stmt; stmt 0;R) = wp (stmt;wp (stmt 0;R)),

I

wp (x := 2 � y ; y := x + 3 � y ; y > 10)
= wp (x := 2 � y ;wp (y := x + 3 � y ; y > 10))
= wp (x := 2 � y ; (y > 10)[y=x + 3 � y ])
= wp (x := 2 � y ; x + 3 � y > 10)
= (x + 3 � y > 10)[x=2 � y ]
= (2 � y + 3 � y > 10)
= y > 2



Weakest precondition of conditionals

I Assume a conditional (if(B) then stmt else stmt 0), for
example (if(x > y) then z := x else z := y)

I The weakest precondition is given by: 
wp ((if(B) then stmt else stmt 0);R)

= (B ) wp (stmt;R)) ^ (:B ) wp (stmt 0;R))

!

I For example,
wp ((if(x > y) then z := x else z := y); z � 10)

= (x > y ) wp (z := x ; z � 10)) ^ (x � y ) wp (z := y ; z � 10))
= (x > y ) x � 10) ^ (x � y ) y � 10)

,

I More general:

wp

0
B@
0
B@

if B1 ! stmt1
� B2 ! stmt2
fi

1
CA ;R

1
CA

=
(B1 _ B2) ^ (B1 ) wp (stmt1;R)) ^ (B2 ) wp (stmt2;R))
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Hoare Triples for Loops, Partial Correctness

fInv ^ Bg stmt fInvg
fInvg (while (B) fstmtg) fInv ^ :Bg

I In order to establish fPg (while(B)dofstmtg) fRg, you will
need to find an invariant Inv such that:
I P ) Inv (Inv holds at start of the loop)
I fInv ^ Bg stmt fInvg (Inv holds after each iteration)
I (Inv ^ :B))R (At exit, Inv implies R)



Hoare Triples for Loops, Example

Show:
fQ : trueg
i := 0;
j := 0;
fP : i = 0 ^ j = 0g
while(i < 10)dof

i := i + 1;
j := j + 1;

g

fR : j = 10g

I First, show fQ : truegi := 0; j := 0fP : i = 0 ^ j = 0g
I Then for the loop:

1. P ) Inv
2. fInv ^ Bg stmt fInvg
3. (Inv ^ :B))R



Hoare Triples for Loops, Example

I To show fQ : truegi := 0; j := 0fP : i = 0 ^ j = 0g:
I show fQ : trueg =) wp (i := 0; j := 0;P):
I Assume Q, show wp (i := 0; j := 0;P) is true.
I By sequential composition: wp (i := 0; j := 0;P)

= wp (i := 0;wp (j := 0;P))
I By assignment: wp (i := 0;wp (j := 0; i = 0 ^ j = 0))

= wp (i := 0; i = 0) = true
I Hence, fQ : trueg =) wp (i := 0; j := 0; i = 0 ^ j = 0) and
fQ : truegi := 0; j := 0fP : i = j = 0g is valid.



Hoare Triples for Loops, Example

I For the loop, we need to find a suitable invariant, i.e., a
predicate that holds both at the beginning of the loop and
after each iteration of the loop and that implies the
postcondition at the end of the loop.

I Candidate invariant: Inv : i = j ^ i � 10. To establish Inv is a
suitable invariant, we prove:

1. P ) Inv : We asume i = 0 and j = 0 and prove i = j ^ i � 10
is true.

2. fInv ^ Bg stmt fInvg: we show (i = j ^ i � 10 ^ i < 10) =)
wp (i := i + 1; j := j + 1; i = j ^ i � 10). For this: assume
i = j ; i � 10; i < 10 and show
wp (i := i + 1; j := j + 1; i = j^ � 10) is true.

3. (Inv ^ :B))R: is shown by proving that
(i = j ^ j � 10 ^ :(i < 10)) =) (j = 10) (i.e., assume i = j ,
i � 10, :(i < 10) and show j = 10 is true).



Hoare Triples for Loops, Total Correctness

I fPg (while(B)dofstmtg) fRg
I Partial correctness: if we start from P and

(while(B)dofstmtg) terminates, then R terminates.
I P ) Inv
I fInv ^ Bg stmt fInvg
I (Inv ^ :B))R

I Total correctness: the loop does terminate: find a variant
function v such that:
I (Inv ^ B) ) (v > 0)
I fInv ^ B ^ v = v0g stmt fv < v0g



Hoare Triples for Loops, Example

Show termination of the loop:
fQ : trueg
i := 0; j := 0;
fP : i = 0 ^ j = 0g
while(i < 10)dof

i := i + 1;
j := j + 1;

g
fR : j = 10g

I we can use the invariant used for the first three rules (partial
correctness) (i = j ^ i � 10) and the variant (v = 10� i)

I (Inv ^ B) ) (v > 0) is established by proving
(i = j ^ i � 10 ^ i < 10) implies 10� i > 0

I fInv ^ B ^ v = v0g stmt fv < v0g is shown by proving
(i = j ^ i � 10 ^ i < 10 ^ 10� i = v0) implies
wp (i := i + 1; j := j + 1; 10� i < v0)



Examples: Termination

Show:
fQ : a � 0 ^ b � 0g
z := 0; x := a; y := b
finvP : (x � 0) ^ (z + x � y = a � b)g
fboundt : xg
while(x � 1)f

if(odd(x))fz := z + y ; g
elsefskip; g
x := x=2;
y := 2 � y ;

g

fR : z = a � bg



Dutch national flag

fP : 8i :0 � i < a:Length : (a[i ] = red _ a[i ] = white _ a[i ] = blue)g
r := 0; w := 0; b := a:Length;
while(w � b)dof

if(a[w ] = blue)thenf
a[w ]; a[b � 1] := a[b � 1]; a[w ]; b := b � 1;

gelse if(a[w ] = red)thenf
a[w ]; a[r ] := a[r ]; a[w ]; w ; r := w + 1; r + 1;

gelse if(a[w ] = white)thenf
w := w + 1;

g

g

fR :

0
B@

(8i :0 � i < r : a[i ] = red)
^ (8i :r � i < w : a[i ] = white)
^ (8i :w � i < a:Length : a[i ] = blue)

1
CA
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