Software Verification
Satisfiability Modulo Theory and applications

Symbolic representations |l

Ahmed Rezine

IDA, Linképings Universitet

Spring 2025

Outline

Lazy SMT solvers
Theories and SMTLIB
Symbolic Execution

Further readings

Introduction

Originates from automating proof-search for first order logic.
» Variables: x,y, z, ...
» Constants: a, b, c, ...
» N-ary functions: f, g, h, ...
» N-ary predicates: p,q,r, ...
» Atoms: L, T,p(t,-.-,tn)
P Literals: atoms or their negation
>

A FOL formula is a literal, boolean combinations of formulas,
or quantified (3, V) formulas.

Evaluation of formula ¢, with respect to interpretation / over
non-empty (possibly infinite) domains for variables and constants
gives true or false (resp. | |= ¢ or I [~)

Satisfiability and Validity

A formula g is:
> satisfiable if / |= ¢ for some interpretation /
» valid if / = ¢ for all interpretations /

Satisfiability of FOL is undecidable. Instead, target decidable or
domain-specific fragments.

Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

(1>

P g(a)=cn(f(g(a)) #f(c)Veg(a)=d)Ac#d

» EUF: Equality over Uninterpreted functions
P Satisfiable?

Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

o 2 (x>0 A(x<1)
A((F(x1) = f(0)) = (rd(wr(a, x2,x3),x2 + x1) = x3 + 1)

Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

o 2 (x>0 A(x<1)
A((F(x1) = f(0)) = (rd(wr(a, x2,x3),x2 + x1) = x3 + 1)

» involves arrays with read (rd) and write (wr):
» Yarr Vi Vval. (rd(wr(arr,i,val),i) = val)
» Varr Vi V) Vval. (i # j = rd(wr(arr,i,val),j)) = rd(arr,j))

Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

p £ (xa20)A(x<1)
A((f(x1) = f(0)) = (rd(wr(a, x2,x3), x2 + x1) = x3 + 1)

» Linear Integer Arithmetic (LIA)

Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the

formula true?

o £ (a20)A(a<1)
A((f(x1) = F(0)) = (rd(wr(a,x2,x3),x2 + x1) = x3 + 1)

» Linear Integer Arithmetic (LIA)
» Equality over Uninterpreted functions (EUF)
» Arrays (A)

Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

p £ (a20)A(x<1)
A((f(x1) = f(0)) = (rd(wr(a, x2,x3),x2 + x1) = x3 + 1)

> LIA: x1 =0

» EUF: f(x1) = f(0)

» A: rd(wr(a, x2,x3),x2) = X3

» Bool: rd(wr(P,x2,x3),x2) = x3+ 1
> LIA: L

Introduction

P> Sometimes more natural to express in logics other than
propositional logic

» SMT decide satisfiablity of ground FO formulas wrt.
background theory

» Many applications: Model checking, predicate abstraction,
symbolic execution, scheduling, test generation, ...

Introduction: from SAT to SMT

» Eager approach with “bit-blasting” (UCLID):

» Encode SMT formula in propositional logic
P Use off-the-shelf SAT solver
P Still dominant for bit-vector arithmetic
» Lazy-approach (CVC4, MathSat, Yices, Z3, ...)
P> Combine SAT (CDCL) and theory solvers
P Sat-solver enumerates models for the boolean part
» Theory solvers check satisfiability in the theory

Eager approach e.g.: EUF

» remove terms f(a), f(b), f(c) by replacing with fresh
constants A, B, C.

P adda=b=>A=B, a=c=>A=Candb=c=B=C

P for n constants use logn bits to encode value of each constant
a, b, ...

» each a = b is replaced by P,

» add P,p A Ppec = Pac

Outline

Lazy SMT solvers

Lazy SMT solvers

P Restrict theory solver to conjunctions of constraints
» Convert to disjunctive normal form and check one conjunction
at a time

» Or use Sat to enumerate conjuncts

Basic lazy SMT

1 ¥ = to_cnf(p);

> while(true){

3 res, M = check_SAT (%) ;
4 if(res){

5 Mt = to_theory (M);

6 res = check_theory(Mr);
7 if(res)

8 return SAT;

9 else

10 YA = M,

1 }else

1 return UNSAT;

13 }

Integrating SMT and SAT

(1:8(a) = c)A((2: f(g(a)) # f(c))V(3: g(a) = d))A(4: c # d)

» SAT-solver gives {1,2,4}

> But {(g(a) = c), (F(g(2)) # £(c)), (c # d)} unsat by the
Theory-solver

> Add {1V 2V 4} to sat formula
> SAT-solver gives {1,2,3,4}

> But {(g(a) = ¢), (f(g(a)) = f(c)), (g(a) = d), (c # d)} unsat by
the Theory solver

» Add {1V 2V 3,4} to sat formula

» SAT-solver declares unsat, hence the original formula is unsat

Integrating SMT and SAT

A A
v = Y8 =
Cc1 : ﬁ(2X2 — X3 > 2) \ (X1 +x3 < 5) E\/ A12
o Alx1t—x3<B)V(x1—x<1) Ao1 V A2
c3 : ﬁ(3X1 —2x < 3) \Y% ﬁ(X]. —x3 < 5) TM \ T&
ca : =(3x1 — x3 < 6) V (x1 + x3 < 5) As1 V A
s (x1+x3<5)V(3Bx1—2x <3) As1 V Az
6 (x2— x4 <6)V-(xt+x3<5) Ae1 V Asz
a ¢ (a+x3<B)V(x3=3x5+4)V(xa—x <5) An V A7z V A7z

P Sat-solver gives {A12, A22,A731, A741, As1, Ae1, A2}

(x1 +x3 <5),(x1 — x5 <1),7(3x1 — 2x2 < 3),

ﬁ(3X1 —x3 < 6), (X2 — x4 < 6), (X3 =3x5 + 4)
Theory-solver

» Add (A712\/A722\/A31 V Al \/A75,1VA761\/A772) to Yp

> But } unsat by the

Outline

Theories and SMTLIB

SMT competition and SMTLIB

» Drive development, since 2005
» 15 instance at https://smt-comp.github.io/2020
» Papers at SAT, CADE, CAV, FMCAD, TACAS, ...

» SMTLIB key initiative to promote common input and output
for SMT solvers, benchmarks, tutorials, ...

> at http://smtlib.cs.uiowa.edu/

https://smt-comp.github.io/2020
http://smtlib.cs.uiowa.edu/

Equality with uninterpreted Functions (EUF)

» Consider ax (f(b)+f(c))=dAbx(f(a)+f(c))#£dAa=b

» Formula is unsat, could be abstracted with

> h(a,g(F(b), F(c))) = d A h(b,g(£(b), F(c)) #£ d Aa=b

» EUF used to abstracted non-supported theories such as
non-linear multiplication or ALUs in circuits.

Arithmetic

Several restricted fragments, whether real or integer variables:
» Bounds x ~ k with ~€ {<,<,=,>,>}
» Difference logic x — y ~ k with ~€ {<,<,=,>,>}
» UTVPI £x £y ~ k with ~€ {<,<,=,>,>}
P Linear Arithmetic x +2y — 3z < 2
>

Non-linear arithmetic xy — 4xy? +2z < 2

Arrays

» Special functions read and write
» Axioms:
P VaViVv(read(write(a,i,v),i) = v)
P VaViVjVv(i # j = read(write(a, i, v),j)) = read(a,j))
» Used for software (arrays) and hardware (memories)
verification

Bit vectors

» Operations on vectors of bits

P String like: concatenation, extraction, ...
» Logical: bit-wise or, not, and...
P Arithmetic: add, substract, multiply, ..

» a[0: 1] #b[0:1]A(alb) =cAc[0] =0Aa[l]+ b[1] =0

Outline

Symbolic Execution

Testing

vvyywyy

v

Most common form of software validation
Explores only one possible execution at a time
For each new value, run a new test.

On a 32 bit machine, if (i==2023) bug() would require 232
different values to make sure there is no bug.

The idea in symbolic testing is to associate symbolic values
to the variables

Symbolic Testing

» Main idea by JC. King in “Symbolic Execution and Program
Testing” in the 70s

P> Use symbolic values instead of concrete ones

» Along the path, maintain a Path Constraint (PC) and a
symbolic state (o)

PC collects constraints on variables’ values along a path,

0 associates variables to symbolic expressions,

4

>

> We get concrete values if PC is satisfiable
P The program can be run on these values
>

Negate a condition in the path constraint to get another path

Symbolic Execution: a simple example

» Can we get to the ERROR? explore using SSA forms.

P Useful to check array out of bounds, assertion violations, etc.

foo(int x,y,z){ PGy = true

2x =7y - z; PCy = PCy X X0,Y = Y0,Z— 20

3 if(x==2){ PG =PG Ax1 =y — 2 x = (Yo —20),y = ¥0,2= 20

4 z =z - 3; PCy = PG Ax1 = 29 x = (Yo —20), ¥y = 0,2 29

5 if(4%z < x + y){ PCs = PC4 Nz =29 —3 x = (Yo —20),y — ¥0,2+— (20 —3)
6 i£(25 > x + y) { PCo=PCs Nd*xz <x1+yo x> (yo—20),y+ ¥,z (20 —3)
7

8 ¥

9 elseq{

10 ERROR; PCio = PG A25 < x1 +yo x—= (Yo —20),y = w0,z — (20 — 3)
11 }

12}

13 }

14 .

PC=(x1i=yo—20Ax1=20Nz1 =20 —3AN4%xz1 <x1+ ¥ AN25<x1+ y0)
Check satisfiability with a solver (e.g., z3, cvc, yices,
boolector,stp,...)

https://github.com/Z3Prover/z3
https://cvc5.github.io/
https://yices.csl.sri.com/
https://github.com/Boolector/boolector
https://github.com/stp/stp

Symbolic execution today

P Leverages on the impressive advancements of SMT solvers
» Modern symbolic execution frameworks are not purely
symbolic and are often dynamic: Sage, Klee (open source),
Pex:
» They can follow a concrete execution while collecting
constraints along the way, or
» They can treat some of the variables concretely, and some
other symbolically

P This allows them to scale, to handle closed code or complex
queries

https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf
https://klee.github.io/
https://www.microsoft.com/en-us/research/publication/pex-white-box-test-generation-for-net/

Symbolic execution today

» C (actullay llvm) http://klee.github.io/

» Java (more than a symbolic executer)
http://babelfish.arc.nasa.gov/trac/jpf
» C# (actually .net)

http://research.microsoft.com/en-us/projects/pex/

> ...

http://klee.github.io/
http://babelfish.arc.nasa.gov/trac/jpf
http://research.microsoft.com/en-us/projects/pex/

Outline

Further readings

Further readings

[3 A. R Bradley and Z. Manna.
(chap 10) The calculus of computation: decision procedures with applications to
verification.
Springer Science & Business Media, 2007.

[W c. Cadar, D. Dunbar, D. R. Engler, et al.
Klee: unassisted and automatic generation of high-coverage tests for complex
systems programs.
In OSDI, volume 8, pages 209-224, 2008.

@ L. De Moura and N. Bjgrner.
Satisfiability modulo theories: introduction and applications.
Communications of the ACM, 54(9):69-77, 2011.

@ P. Godefroid, M. Y. Levin, and D. Molnar.
Sage: whitebox fuzzing for security testing.
Queue, 10(1):20-27, 2012.

@ R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
Solving sat and sat modulo theories: From an abstract
davis—putnam—-logemann—loveland procedure to dpli(t).
J. ACM, 53(6):937-977, Nov. 2006.

	Lazy SMT solvers
	Theories and SMTLIB
	Symbolic Execution
	Further readings

