
Software Verification

Satisfiability Modulo Theory and applications
Symbolic representations II

Ahmed Rezine

IDA, Linköpings Universitet

Spring 2025

Outline

Lazy SMT solvers

Theories and SMTLIB

Symbolic Execution

Further readings

Introduction

Originates from automating proof-search for first order logic.
I Variables: x ; y ; z ; :::
I Constants: a; b; c; :::
I N-ary functions: f ; g ; h; :::
I N-ary predicates: p; q; r ; :::
I Atoms: ?;>; p(t1; : : : ; tn)
I Literals: atoms or their negation
I A FOL formula is a literal, boolean combinations of formulas,

or quantified (9, 8) formulas.
Evaluation of formula ', with respect to interpretation I over
non-empty (possibly infinite) domains for variables and constants
gives true or false (resp. I j= ' or I 6j= ')

Satisfiability and Validity

A formula ' is:
I satisfiable if I j= ' for some interpretation I
I valid if I j= ' for all interpretations I

Satisfiability of FOL is undecidable. Instead, target decidable or
domain-specific fragments.

Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , g(a) = c ^ (f (g(a)) 6= f (c) _ g(a) = d) ^ c 6= d

I EUF: Equality over Uninterpreted functions
I Satisfiable?

Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , (x1 � 0) ^ (x1 < 1)
^((f (x1) = f (0))) (rd(wr(a; x2; x3); x2 + x1) = x3 + 1)

I involves arrays with read (rd) and write (wr):
I 8arr 8i 8val : (rd(wr(arr ; i ; val); i) = val)
I 8arr 8i 8j 8val : (i 6= j) rd(wr(arr ; i ; val); j)) = rd(arr ; j))

Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , (x1 � 0) ^ (x1 < 1)
^((f (x1) = f (0))) (rd(wr(a; x2; x3); x2 + x1) = x3 + 1)

I involves arrays with read (rd) and write (wr):
I 8arr 8i 8val : (rd(wr(arr ; i ; val); i) = val)
I 8arr 8i 8j 8val : (i 6= j) rd(wr(arr ; i ; val); j)) = rd(arr ; j))

Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , (x1 � 0) ^ (x1 < 1)
^((f (x1) = f (0))) (rd(wr(a; x2; x3); x2 + x1) = x3 + 1)

I Linear Integer Arithmetic (LIA)

Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , (x1 � 0) ^ (x1 < 1)
^((f (x1) = f (0))) (rd(wr(a; x2; x3); x2 + x1) = x3 + 1)

I Linear Integer Arithmetic (LIA)
I Equality over Uninterpreted functions (EUF)
I Arrays (A)

Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , (x1 � 0) ^ (x1 < 1)
^((f (x1) = f (0))) (rd(wr(a; x2; x3); x2 + x1) = x3 + 1)

I LIA: x1 = 0
I EUF: f (x1) = f (0)
I A: rd(wr(a; x2; x3); x2) = x3

I Bool: rd(wr(P; x2; x3); x2) = x3 + 1
I LIA: ?

Introduction

I Sometimes more natural to express in logics other than
propositional logic

I SMT decide satisfiablity of ground FO formulas wrt.
background theory

I Many applications: Model checking, predicate abstraction,
symbolic execution, scheduling, test generation, ...

Introduction: from SAT to SMT

I Eager approach with “bit-blasting” (UCLID):
I Encode SMT formula in propositional logic
I Use off-the-shelf SAT solver
I Still dominant for bit-vector arithmetic

I Lazy-approach (CVC4, MathSat, Yices, Z3, ...)
I Combine SAT (CDCL) and theory solvers
I Sat-solver enumerates models for the boolean part
I Theory solvers check satisfiability in the theory

Eager approach e.g.: EUF

I remove terms f (a); f (b); f (c) by replacing with fresh
constants A;B;C .

I add a = b) A = B, a = c) A = C and b = c) B = C
I for n constants use logn bits to encode value of each constant

a; b; :::
I each a = b is replaced by Pa;b

I add Pa;b ^ Pb;c) Pa;c

Outline

Lazy SMT solvers

Theories and SMTLIB

Symbolic Execution

Further readings

Lazy SMT solvers

I Restrict theory solver to conjunctions of constraints
I Convert to disjunctive normal form and check one conjunction

at a time
I Or use Sat to enumerate conjuncts

Basic lazy SMT

1 = to_cnf (') ;
2 while (t r u e) {
3 r e s , M = check_SAT () ;
4 if (r e s) {
5 MT = to_theo ry (M) ;
6 r e s = check_theory (MT) ;
7 if (r e s)
8 return SAT;
9 else

10 ^ = :M ;
11 }else
12 return UNSAT;
13 }

Integrating SMT and SAT

(1 : g(a) = c)^((2 : f (g(a)) 6= f (c))_(3 : g(a) = d))^(4 : c 6= d)

I SAT-solver gives f1; 2; 4g

I But f(g(a) = c); (f (g(a)) 6= f (c)); (c 6= d)g unsat by the
Theory-solver

I Add f1 _ 2 _ 4g to sat formula

I SAT-solver gives f1; 2; 3; 4g

I But f(g(a) = c); (f (g(a)) = f (c)); (g(a) = d); (c 6= d)g unsat by
the Theory solver

I Add f1 _ 2 _ 3; 4g to sat formula

I SAT-solver declares unsat, hence the original formula is unsat

Integrating SMT and SAT

 ,
c1 : :(2x2 � x3 > 2) _ (x1 + x3 � 5)
c2 : :(x1 � x3 � 5) _ (x1 � x5 � 1)
c3 : :(3x1 � 2x2 � 3) _ :(x1 � x3 � 5)
c4 : :(3x1 � x3 � 6) _ :(x1 + x3 � 5)
c5 : (x1 + x3 � 5) _ (3x1 � 2x2 � 3)
c6 : (x2 � x4 � 6) _ :(x1 + x3 � 5)
c7 : (x1 + x3 � 5) _ (x3 = 3x5 + 4) _ :(x1 � x3 � 5)

 B ,

A11 _ A12
A21 _ A22
A31 _ A32
A41 _ A42
A51 _ A31
A61 _ A62
A71 _ A72 _ A73

I Sat-solver gives fA12;A22;A31;A41;A51;A61;A72g

I But
�

(x1 + x3 � 5); (x1 � x5 � 1);:(3x1 � 2x2 � 3);
:(3x1 � x3 � 6); (x2 � x4 � 6); (x3 = 3x5 + 4)

�
unsat by the

Theory-solver
I Add (A12 _ A22 _ A31 _ A41 _ A51 _ A61 _ A72) to B

Outline

Lazy SMT solvers

Theories and SMTLIB

Symbolic Execution

Further readings

SMT competition and SMTLIB

I Drive development, since 2005
I 15th instance at https://smt-comp.github.io/2020
I Papers at SAT, CADE, CAV, FMCAD, TACAS, ...
I SMTLIB key initiative to promote common input and output

for SMT solvers, benchmarks, tutorials, ...
I at http://smtlib.cs.uiowa.edu/

https://smt-comp.github.io/2020
http://smtlib.cs.uiowa.edu/

Equality with uninterpreted Functions (EUF)

I Consider a � (f (b) + f (c)) = d ^ b � (f (a) + f (c)) 6= d ^ a = b
I Formula is unsat, could be abstracted with
I h(a; g(f (b); f (c))) = d ^ h(b; g(f (b); f (c))) 6= d ^ a = b
I EUF used to abstracted non-supported theories such as

non-linear multiplication or ALUs in circuits.

Arithmetic

Several restricted fragments, whether real or integer variables:
I Bounds x � k with �2 f<;�;=;�; >g
I Difference logic x � y � k with �2 f<;�;=;�; >g
I UTVPI �x � y � k with �2 f<;�;=;�; >g
I Linear Arithmetic x + 2y � 3z � 2
I Non-linear arithmetic xy � 4xy2 + 2z � 2

Arrays

I Special functions read and write
I Axioms:

I 8a8i8v(read(write(a; i ; v); i) = v)
I 8a8i8j8v(i 6= j) read(write(a; i ; v); j)) = read(a; j))

I Used for software (arrays) and hardware (memories)
verification

Bit vectors

I Operations on vectors of bits
I String like: concatenation, extraction, ...
I Logical: bit-wise or, not, and...
I Arithmetic: add, substract, multiply, ...

I a[0 : 1] 6= b[0 : 1] ^ (ajb) = c ^ c[0] = 0 ^ a[1] + b[1] = 0

Outline

Lazy SMT solvers

Theories and SMTLIB

Symbolic Execution

Further readings

Testing

I Most common form of software validation
I Explores only one possible execution at a time
I For each new value, run a new test.
I On a 32 bit machine, if(i==2023) bug() would require 232

different values to make sure there is no bug.
I The idea in symbolic testing is to associate symbolic values

to the variables

Symbolic Testing

I Main idea by JC. King in “Symbolic Execution and Program
Testing” in the 70s

I Use symbolic values instead of concrete ones
I Along the path, maintain a Path Constraint (PC) and a

symbolic state (�)
I PC collects constraints on variables’ values along a path,
I � associates variables to symbolic expressions,
I We get concrete values if PC is satisfiable
I The program can be run on these values
I Negate a condition in the path constraint to get another path

Symbolic Execution: a simple example

I Can we get to the ERROR? explore using SSA forms.
I Useful to check array out of bounds, assertion violations, etc.
1foo(int x,y,z){
2 x = y - z;
3 if(x==z){
4 z = z - 3;
5 if (4*z < x + y){
6 if (25 > x + y) {
7 ...
8 }
9 else{

10 ERROR ;
11 }
12 }
13 }
14 ...

PC1 = true
PC2 = PC1 x 7! x0; y 7! y0; z 7! z0
PC3 = PC2 ^ x1 = y0 � z0 x 7! (y0 � z0); y 7! y0; z 7! z0
PC4 = PC3 ^ x1 = z0 x 7! (y0 � z0); y 7! y0; z 7! z0
PC5 = PC4 ^ z1 = z0 � 3 x 7! (y0 � z0); y 7! y0; z 7! (z0 � 3)
PC6 = PC5 ^ 4 � z1 < x1 + y0 x 7! (y0 � z0); y 7! y0; z 7! (z0 � 3)

PC10 = PC6 ^ 25 � x1 + y0 x 7! (y0 � z0); y 7! y0; z 7! (z0 � 3)

PC = (x1 = y0 � z0 ^ x1 = z0 ^ z1 = z0 � 3 ^ 4 � z1 < x1 + y0 ^ 25 � x1 + y0)

Check satisfiability with a solver (e.g., z3, cvc, yices,
boolector,stp,...)

https://github.com/Z3Prover/z3
https://cvc5.github.io/
https://yices.csl.sri.com/
https://github.com/Boolector/boolector
https://github.com/stp/stp

Symbolic execution today

I Leverages on the impressive advancements of SMT solvers
I Modern symbolic execution frameworks are not purely

symbolic and are often dynamic: Sage, Klee (open source),
Pex:
I They can follow a concrete execution while collecting

constraints along the way, or
I They can treat some of the variables concretely, and some

other symbolically
I This allows them to scale, to handle closed code or complex

queries

https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf
https://klee.github.io/
https://www.microsoft.com/en-us/research/publication/pex-white-box-test-generation-for-net/

Symbolic execution today

I C (actullay llvm) http://klee.github.io/
I Java (more than a symbolic executer)

http://babelfish.arc.nasa.gov/trac/jpf
I C# (actually .net)

http://research.microsoft.com/en-us/projects/pex/
I ...

http://klee.github.io/
http://babelfish.arc.nasa.gov/trac/jpf
http://research.microsoft.com/en-us/projects/pex/

Outline

Lazy SMT solvers

Theories and SMTLIB

Symbolic Execution

Further readings

Further readings

A. R. Bradley and Z. Manna.
(chap 10) The calculus of computation: decision procedures with applications to
verification.
Springer Science & Business Media, 2007.

C. Cadar, D. Dunbar, D. R. Engler, et al.
Klee: unassisted and automatic generation of high-coverage tests for complex
systems programs.
In OSDI, volume 8, pages 209–224, 2008.

L. De Moura and N. Bjørner.
Satisfiability modulo theories: introduction and applications.
Communications of the ACM, 54(9):69–77, 2011.

P. Godefroid, M. Y. Levin, and D. Molnar.
Sage: whitebox fuzzing for security testing.
Queue, 10(1):20–27, 2012.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
Solving sat and sat modulo theories: From an abstract
davis–putnam–logemann–loveland procedure to dpll(t).
J. ACM, 53(6):937–977, Nov. 2006.

	Lazy SMT solvers
	Theories and SMTLIB
	Symbolic Execution
	Further readings

