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Basics

Sat solvers usually take propositional formulas written in
conjunctive normal (cnf):
I variables: propositional variables, e.g., x ; y ; z ; : : :
I literals: variables or their negations, e.g., x ; x ; y ; : : :
I clause: disjunction of literals, e.g., (x _ y)
I cnf formula: conjunction of clauses, e.g.,

(x _ y) ^ (y _ z) ^ (z) ^ (x)
I a (partial) variable assignment associates (some of the)

variables to Boolean values in f0; 1g



Basics: a well known NP-problem

Given a propositional formula (usually in cnf), does there exist a
satisfying assignment (i.e., a variable assignment for which the
formula evaluates to true)?
I x 7! 1; y 7! 1; z 7! 0 is a satisfying assignment for

(x _ y) ^ (y _ z) ^ (z). The formula is satisfiable
I (x _ y)^ (y _ z)^ (z)^ (x) has no satisfying assignment, it is

unsatisfiable
I Success story with applications in hardware/software model

checking, planning, combinatorial design, test pattern
generation, protocol design, bioinformatics, etc.

I From 100 variables and 200 constraints in early 90s to more
than a 1,000,000 variables and 5,000,000 constraints



Unit propagation

I A unit is a clause where there is one unassigned literal while
all other literals are assigned 0.

I The only chance for the current assignment to satisfy the
formula is to assign 1 to unassigned literals in unit clauses

I (x) ^ (x _ y) ^ (y _ z _ s) ^ (z _ y _ x) ^ : : :

I implied assignment: x = 1, antecedent (x)
I implied assignment: y = 1, antecedent (x _ y)
I implied assignment: z = 1, antecedent (z _ y _ x)
I implied assignment: s = 1, antecedent (y _ z _ s)



Davis-Putnam-Logemann-Loveland (DPLL)

I decides satisfiability for sat-cnf problems
I introduced in early 60s
I basis of modern sat solvers
I idea: alternate unit propagation, choosing a value for some

variable, and recursively checking the result, if does not give
satisfying assignment then backtrack (remove ) with opposit
value



Davis-Putnam-Logemann-Loveland (DPLL)

Algorithm 1: DPLL-recursive(', �)
Input: ': cnf formula, �: partial assignment
Output: UNSAT or satisfying assignment
('; �) := UnitPropagate('; �);
if ' contains an empty clause then

return UNSAT ;
if ' has no clauses left then

Output �;
return SAT;

l := a literal not assigned by �;
if (DPLL-recursive('[l ]; � [ flg)) then

return SAT ;
return DPLL-recursive('[:l ]; � [ f:lg);



DPLL, Example

' = (x _ y) ^ (y _ z) ^ (x _ y _ z) ^ (x _ z)

level decision formula unit propagation
0 x = 1 (1 _ y) ^ (y _ z) ^ (1 _ y _ z) ^ (1 _ 1) z = 1@0
1 y = 1 (1 _ 1) ^ (1 _ 1) ^ (1 _ 1 _ 1) ^ (1 _ 1)
1 y = 0 (1 _ 0) ^ (0 _ 1) ^ (1 _ 0 _ 1) ^ (1 _ 1)

x = 1@0; z = 1@0; y = 0@1



DPLL, Example 2

' = (a _ b _ d) ^ (a _ b _ e) ^ (b _ d _ e) ^ (a _ b _ c _ d) ^ (a _
b _ c _ d) ^ (a _ b _ c _ e) ^ (a _ b _ c _ e)



Modern solvers



What made it possible?

I Clause learning with non chronological backtracking
I search restarts
I lazy data-structures
I ...



Clause learning

I capture “cause” of encountered conflict as a clause
I the conflict clause is added to the formula
I if deciding x = 1 and y = 0 led to unsat then remember this

by adding (x _ y) to the formula
I learn “reasons” of discovered inconsistencies in order to avoid

them in the future



Conflict clauses

I Current assignment: x9 = 0@1; x10 = 0@3; x11 = 0@3; :::
I Current decision: x1 = 1@6
w1 = (x1 _ x2)
w2 = (x1 _ x3 _ x9)
w3 = (x2 _ x3 _ x4)
w4 = (x4 _ x5 _ x10)
w5 = (x4 _ x6 _ x11)
w6 = (x5 _ x6)
w7 = (x1 _ x7 _ x12)
w8 = (x1 _ x8)
w9 = (x7 _ x8 _ x13)
::::

x1 = 1@6

x2 = 1@6

x10 = 0@3

x4 = 1@6

x5 = 1@6

x3 = 1@6 x6 = 1@6

x9 = 0@1 x11 = 0@3

?

w1 w3 w6 w6

w2 w3 w5 w6

w4

w2 w5



Implication graph

I source nodes of implication graph can be used as a conflict
clause

I here, (x1 _ x9 _ x10 _ x11) can be added as a conflict clause
I better clauses with “unique implication point”
I here, add (x4 _ x10 _ x11)



SMTs as generalizations of SAT

Originates from automating proof-search for first order logic.
I Variables: x ; y ; z ; :::
I Constants: a; b; c; :::
I N-ary functions: f ; g ; h; :::
I N-ary predicates: p; q; r ; :::
I Atoms: ?;>; p(t1; : : : ; tn)
I Literals: atoms or their negation
I A FOL formula is a literal, boolean combinations of formulas,

or quantified (9, 8) formulas.
Evaluation of formula ', with respect to interpretation I over
non-empty (possibly infinite) domains for variables and constants
gives true or false (resp. I j= ' or I 6j= ')



Satisfiability and Validity

A formula ' is:
I satisfiable if I j= ' for some interpretation I
I valid if I j= ' for all interpretations I

Satisfiability of FOL is undecidable. Instead, target decidable or
domain-specific fragments.



Introduction to SMT

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , g(a) = c ^ (f (g(a)) 6= f (c) _ g(a) = d) ^ c 6= d

I EUF: Equality over Uninterpreted functions
I Satisfiable?
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Introduction to SMT

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , (x1 � 0) ^ (x1 < 1)
^((f (x1) = f (0)) ) (rd(wr(a; x2; x3); x2 + x1) = x3 + 1)

I LIA: x1 = 0
I EUF: f (x1) = f (0)
I A: rd(wr(a; x2; x3); x2) = x3

I Bool: rd(wr(P; x2; x3); x2) = x3 + 1
I LIA: ?



Introduction to SMT

I Sometimes more natural to express in logics other than
propositional logic

I SMT decide satisfiablity of ground FO formulas wrt.
background theory

I Many applications: Model checking, predicate abstraction,
symbolic execution, scheduling, test generation, ...
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SMT competition and SMTLIB

I Drive development, since 2005
I 19th instance at https://smt-comp.github.io/2024/
I Papers at SAT, CADE, CAV, FMCAD, TACAS, ...
I SMTLIB key initiative to promote common input and output

for SMT solvers, benchmarks, tutorials, ...
I at http://smtlib.cs.uiowa.edu/

https://smt-comp.github.io/2024/
http://smtlib.cs.uiowa.edu/


Equality with uninterpreted Functions (EUF)

I Consider a � (f (b) + f (c)) = d ^ b � (f (a) + f (c)) 6= d ^ a = b
I Formula is unsat, could be abstracted with
I h(a; g(f (b); f (c))) = d ^ h(b; g(f (b); f (c))) 6= d ^ a = b
I EUF used to abstracted non-supported theories such as

non-linear multiplication or ALUs in circuits.



Arithmetic

Several restricted fragments, whether real or integer variables:
I Bounds x � k with �2 f<;�;=;�; >g

I Difference logic x � y � k with �2 f<;�;=;�; >g

I UTVPI �x � y � k with �2 f<;�;=;�; >g

I Linear Arithmetic x + 2y � 3z � 2
I Non-linear arithmetic xy � 4xy2 + 2z � 2



Arrays

I Special functions read and write
I Axioms:

I 8a8i8v(read(write(a; i ; v); i) = v)
I 8a8i8j8v(i 6= j ) read(write(a; i ; v); j)) = read(a; j))

I Used for software (arrays) and hardware (memories)
verification



Bit vectors

I Operations on vectors of bits
I String like: concatenation, extraction, ...
I Logical: bit-wise or, not, and...
I Arithmetic: add, substract, multiply, ...

I a[0 : 1] 6= b[0 : 1] ^ (ajb) = c ^ c[0] = 0 ^ a[1] + b[1] = 0
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Testing

I Most common form of software validation
I Explores only one possible execution at a time
I For each new value, run a new test.
I On a 32 bit machine, if(i==2023) bug() would require 232

different values to make sure there is no bug.
I The idea in symbolic testing is to associate symbolic values

to the variables



Symbolic Testing

I Main idea by JC. King in “Symbolic Execution and Program
Testing” in the 70s

I Use symbolic values instead of concrete ones
I Along the path, maintain a Path Constraint (PC) and a

symbolic state (�)
I PC collects constraints on variables’ values along a path,
I � associates variables to symbolic expressions,
I We get concrete values if PC is satisfiable
I The program can be run on these values
I Negate a condition in the path constraint to get another path



Symbolic Execution: a simple example

I Can we get to the ERROR? explore using SSA forms.
I Useful to check array out of bounds, assertion violations, etc.
1foo(int x,y,z){
2 x = y - z;
3 if(x==z){
4 z = z - 3;
5 if (4*z < x + y){
6 if (25 > x + y) {
7 ...
8 }
9 else{

10 ERROR ;
11 }
12 }
13 }
14 ...

PC1 = true
PC2 = PC1 x 7! x0; y 7! y0; z 7! z0
PC3 = PC2 ^ x1 = y0 � z0 x 7! (y0 � z0); y 7! y0; z 7! z0
PC4 = PC3 ^ x1 = z0 x 7! (y0 � z0); y 7! y0; z 7! z0
PC5 = PC4 ^ z1 = z0 � 3 x 7! (y0 � z0); y 7! y0; z 7! (z0 � 3)
PC6 = PC5 ^ 4 � z1 < x1 + y0 x 7! (y0 � z0); y 7! y0; z 7! (z0 � 3)

PC10 = PC6 ^ 25 � x1 + y0 x 7! (y0 � z0); y 7! y0; z 7! (z0 � 3)

PC = (x1 = y0 � z0 ^ x1 = z0 ^ z1 = z0 � 3 ^ 4 � z1 < x1 + y0 ^ 25 � x1 + y0)

Check satisfiability with a solver (e.g., z3, cvc, yices,
boolector,stp,...)

https://github.com/Z3Prover/z3
https://cvc5.github.io/
https://yices.csl.sri.com/
https://github.com/Boolector/boolector
https://github.com/stp/stp


Symbolic execution today

I Leverages on the impressive advancements of SMT solvers
I Modern symbolic execution frameworks are not purely

symbolic and are often dynamic: Sage, Klee (open source),
Pex:
I They can follow a concrete execution while collecting

constraints along the way, or
I They can treat some of the variables concretely, and some

other symbolically
I This allows them to scale, to handle closed code or complex

queries

https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf
https://klee.github.io/
https://www.microsoft.com/en-us/research/publication/pex-white-box-test-generation-for-net/


Symbolic execution today

I C (actullay llvm) http://klee.github.io/
I Java (more than a symbolic executer)

http://babelfish.arc.nasa.gov/trac/jpf
I C# (actually .net)

http://research.microsoft.com/en-us/projects/pex/
I ...

http://klee.github.io/
http://babelfish.arc.nasa.gov/trac/jpf
http://research.microsoft.com/en-us/projects/pex/


Outline

SAT solving and verification

Theories and SMTLIB

Symbolic Execution

Further readings



Further readings

A. R. Bradley and Z. Manna.
(chap 10) The calculus of computation: decision procedures with applications to
verification.
Springer Science & Business Media, 2007.

C. Cadar, D. Dunbar, D. R. Engler, et al.
Klee: unassisted and automatic generation of high-coverage tests for complex
systems programs.
In OSDI, volume 8, pages 209–224, 2008.

L. De Moura and N. Bjørner.
Satisfiability modulo theories: introduction and applications.
Communications of the ACM, 54(9):69–77, 2011.

P. Godefroid, M. Y. Levin, and D. Molnar.
Sage: whitebox fuzzing for security testing.
Queue, 10(1):20–27, 2012.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
Solving sat and sat modulo theories: From an abstract
davis–putnam–logemann–loveland procedure to dpll(t).
J. ACM, 53(6):937–977, Nov. 2006.


	SAT solving and verification
	Theories and SMTLIB
	Symbolic Execution
	Further readings

