
Software Verification

Satisfiability Modulo Theory and applications
Symbolic representations II

Ahmed Rezine

IDA, Linköpings Universitet

Spring 2024

Outline

SAT solving and verification

Theories and SMTLIB

Symbolic Execution

Further readings

Outline

SAT solving and verification

Theories and SMTLIB

Symbolic Execution

Further readings

Basics

Sat solvers usually take propositional formulas written in
conjunctive normal (cnf):
I variables: propositional variables, e.g., x ; y ; z ; : : :
I literals: variables or their negations, e.g., x ; x ; y ; : : :
I clause: disjunction of literals, e.g., (x _ y)
I cnf formula: conjunction of clauses, e.g.,

(x _ y) ^ (y _ z) ^ (z) ^ (x)
I a (partial) variable assignment associates (some of the)

variables to Boolean values in f0; 1g

Basics: a well known NP-problem

Given a propositional formula (usually in cnf), does there exist a
satisfying assignment (i.e., a variable assignment for which the
formula evaluates to true)?
I x 7! 1; y 7! 1; z 7! 0 is a satisfying assignment for

(x _ y) ^ (y _ z) ^ (z). The formula is satisfiable
I (x _ y)^ (y _ z)^ (z)^ (x) has no satisfying assignment, it is

unsatisfiable
I Success story with applications in hardware/software model

checking, planning, combinatorial design, test pattern
generation, protocol design, bioinformatics, etc.

I From 100 variables and 200 constraints in early 90s to more
than a 1,000,000 variables and 5,000,000 constraints

Unit propagation

I A unit is a clause where there is one unassigned literal while
all other literals are assigned 0.

I The only chance for the current assignment to satisfy the
formula is to assign 1 to unassigned literals in unit clauses

I (x) ^ (x _ y) ^ (y _ z _ s) ^ (z _ y _ x) ^ : : :

I implied assignment: x = 1, antecedent (x)
I implied assignment: y = 1, antecedent (x _ y)
I implied assignment: z = 1, antecedent (z _ y _ x)
I implied assignment: s = 1, antecedent (y _ z _ s)

Davis-Putnam-Logemann-Loveland (DPLL)

I decides satisfiability for sat-cnf problems
I introduced in early 60s
I basis of modern sat solvers
I idea: alternate unit propagation, choosing a value for some

variable, and recursively checking the result, if does not give
satisfying assignment then backtrack (remove) with opposit
value

Davis-Putnam-Logemann-Loveland (DPLL)

Algorithm 1: DPLL-recursive(', �)
Input: ': cnf formula, �: partial assignment
Output: UNSAT or satisfying assignment
('; �) := UnitPropagate('; �);
if ' contains an empty clause then

return UNSAT ;
if ' has no clauses left then

Output �;
return SAT;

l := a literal not assigned by �;
if (DPLL-recursive('[l]; � [flg)) then

return SAT ;
return DPLL-recursive('[:l]; � [f:lg);

DPLL, Example

' = (x _ y) ^ (y _ z) ^ (x _ y _ z) ^ (x _ z)

level decision formula unit propagation
0 x = 1 (1 _ y) ^ (y _ z) ^ (1 _ y _ z) ^ (1 _ 1) z = 1@0
1 y = 1 (1 _ 1) ^ (1 _ 1) ^ (1 _ 1 _ 1) ^ (1 _ 1)
1 y = 0 (1 _ 0) ^ (0 _ 1) ^ (1 _ 0 _ 1) ^ (1 _ 1)

x = 1@0; z = 1@0; y = 0@1

DPLL, Example 2

' = (a _ b _ d) ^ (a _ b _ e) ^ (b _ d _ e) ^ (a _ b _ c _ d) ^ (a _
b _ c _ d) ^ (a _ b _ c _ e) ^ (a _ b _ c _ e)

Modern solvers

What made it possible?

I Clause learning with non chronological backtracking
I search restarts
I lazy data-structures
I ...

Clause learning

I capture “cause” of encountered conflict as a clause
I the conflict clause is added to the formula
I if deciding x = 1 and y = 0 led to unsat then remember this

by adding (x _ y) to the formula
I learn “reasons” of discovered inconsistencies in order to avoid

them in the future

Conflict clauses

I Current assignment: x9 = 0@1; x10 = 0@3; x11 = 0@3; :::
I Current decision: x1 = 1@6
w1 = (x1 _ x2)
w2 = (x1 _ x3 _ x9)
w3 = (x2 _ x3 _ x4)
w4 = (x4 _ x5 _ x10)
w5 = (x4 _ x6 _ x11)
w6 = (x5 _ x6)
w7 = (x1 _ x7 _ x12)
w8 = (x1 _ x8)
w9 = (x7 _ x8 _ x13)
::::

x1 = 1@6

x2 = 1@6

x10 = 0@3

x4 = 1@6

x5 = 1@6

x3 = 1@6 x6 = 1@6

x9 = 0@1 x11 = 0@3

?

w1 w3 w6 w6

w2 w3 w5 w6

w4

w2 w5

Implication graph

I source nodes of implication graph can be used as a conflict
clause

I here, (x1 _ x9 _ x10 _ x11) can be added as a conflict clause
I better clauses with “unique implication point”
I here, add (x4 _ x10 _ x11)

SMTs as generalizations of SAT

Originates from automating proof-search for first order logic.
I Variables: x ; y ; z ; :::
I Constants: a; b; c; :::
I N-ary functions: f ; g ; h; :::
I N-ary predicates: p; q; r ; :::
I Atoms: ?;>; p(t1; : : : ; tn)
I Literals: atoms or their negation
I A FOL formula is a literal, boolean combinations of formulas,

or quantified (9, 8) formulas.
Evaluation of formula ', with respect to interpretation I over
non-empty (possibly infinite) domains for variables and constants
gives true or false (resp. I j= ' or I 6j= ')

Satisfiability and Validity

A formula ' is:
I satisfiable if I j= ' for some interpretation I
I valid if I j= ' for all interpretations I

Satisfiability of FOL is undecidable. Instead, target decidable or
domain-specific fragments.

Introduction to SMT

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , g(a) = c ^ (f (g(a)) 6= f (c) _ g(a) = d) ^ c 6= d

I EUF: Equality over Uninterpreted functions
I Satisfiable?

Introduction to SMT

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , (x1 � 0) ^ (x1 < 1)
^((f (x1) = f (0))) (rd(wr(a; x2; x3); x2 + x1) = x3 + 1)

I involves arrays with read (rd) and write (wr):
I 8arr 8i 8val : (rd(wr(arr ; i ; val); i) = val)
I 8arr 8i 8j 8val : (i 6= j) rd(wr(arr ; i ; val); j)) = rd(arr ; j))

Introduction to SMT

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , (x1 � 0) ^ (x1 < 1)
^((f (x1) = f (0))) (rd(wr(a; x2; x3); x2 + x1) = x3 + 1)

I involves arrays with read (rd) and write (wr):
I 8arr 8i 8val : (rd(wr(arr ; i ; val); i) = val)
I 8arr 8i 8j 8val : (i 6= j) rd(wr(arr ; i ; val); j)) = rd(arr ; j))

Introduction to SMT

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , (x1 � 0) ^ (x1 < 1)
^((f (x1) = f (0))) (rd(wr(a; x2; x3); x2 + x1) = x3 + 1)

I Linear Integer Arithmetic (LIA)

Introduction to SMT

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , (x1 � 0) ^ (x1 < 1)
^((f (x1) = f (0))) (rd(wr(a; x2; x3); x2 + x1) = x3 + 1)

I Linear Integer Arithmetic (LIA)
I Equality over Uninterpreted functions (EUF)
I Arrays (A)

Introduction to SMT

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , (x1 � 0) ^ (x1 < 1)
^((f (x1) = f (0))) (rd(wr(a; x2; x3); x2 + x1) = x3 + 1)

I LIA: x1 = 0
I EUF: f (x1) = f (0)
I A: rd(wr(a; x2; x3); x2) = x3

I Bool: rd(wr(P; x2; x3); x2) = x3 + 1
I LIA: ?

Introduction to SMT

I Sometimes more natural to express in logics other than
propositional logic

I SMT decide satisfiablity of ground FO formulas wrt.
background theory

I Many applications: Model checking, predicate abstraction,
symbolic execution, scheduling, test generation, ...

Outline

SAT solving and verification

Theories and SMTLIB

Symbolic Execution

Further readings

SMT competition and SMTLIB

I Drive development, since 2005
I 19th instance at https://smt-comp.github.io/2024/
I Papers at SAT, CADE, CAV, FMCAD, TACAS, ...
I SMTLIB key initiative to promote common input and output

for SMT solvers, benchmarks, tutorials, ...
I at http://smtlib.cs.uiowa.edu/

https://smt-comp.github.io/2024/
http://smtlib.cs.uiowa.edu/

Equality with uninterpreted Functions (EUF)

I Consider a � (f (b) + f (c)) = d ^ b � (f (a) + f (c)) 6= d ^ a = b
I Formula is unsat, could be abstracted with
I h(a; g(f (b); f (c))) = d ^ h(b; g(f (b); f (c))) 6= d ^ a = b
I EUF used to abstracted non-supported theories such as

non-linear multiplication or ALUs in circuits.

Arithmetic

Several restricted fragments, whether real or integer variables:
I Bounds x � k with �2 f<;�;=;�; >g

I Difference logic x � y � k with �2 f<;�;=;�; >g

I UTVPI �x � y � k with �2 f<;�;=;�; >g

I Linear Arithmetic x + 2y � 3z � 2
I Non-linear arithmetic xy � 4xy2 + 2z � 2

Arrays

I Special functions read and write
I Axioms:

I 8a8i8v(read(write(a; i ; v); i) = v)
I 8a8i8j8v(i 6= j) read(write(a; i ; v); j)) = read(a; j))

I Used for software (arrays) and hardware (memories)
verification

Bit vectors

I Operations on vectors of bits
I String like: concatenation, extraction, ...
I Logical: bit-wise or, not, and...
I Arithmetic: add, substract, multiply, ...

I a[0 : 1] 6= b[0 : 1] ^ (ajb) = c ^ c[0] = 0 ^ a[1] + b[1] = 0

Outline

SAT solving and verification

Theories and SMTLIB

Symbolic Execution

Further readings

Testing

I Most common form of software validation
I Explores only one possible execution at a time
I For each new value, run a new test.
I On a 32 bit machine, if(i==2023) bug() would require 232

different values to make sure there is no bug.
I The idea in symbolic testing is to associate symbolic values

to the variables

Symbolic Testing

I Main idea by JC. King in “Symbolic Execution and Program
Testing” in the 70s

I Use symbolic values instead of concrete ones
I Along the path, maintain a Path Constraint (PC) and a

symbolic state (�)
I PC collects constraints on variables’ values along a path,
I � associates variables to symbolic expressions,
I We get concrete values if PC is satisfiable
I The program can be run on these values
I Negate a condition in the path constraint to get another path

Symbolic Execution: a simple example

I Can we get to the ERROR? explore using SSA forms.
I Useful to check array out of bounds, assertion violations, etc.
1foo(int x,y,z){
2 x = y - z;
3 if(x==z){
4 z = z - 3;
5 if (4*z < x + y){
6 if (25 > x + y) {
7 ...
8 }
9 else{

10 ERROR ;
11 }
12 }
13 }
14 ...

PC1 = true
PC2 = PC1 x 7! x0; y 7! y0; z 7! z0
PC3 = PC2 ^ x1 = y0 � z0 x 7! (y0 � z0); y 7! y0; z 7! z0
PC4 = PC3 ^ x1 = z0 x 7! (y0 � z0); y 7! y0; z 7! z0
PC5 = PC4 ^ z1 = z0 � 3 x 7! (y0 � z0); y 7! y0; z 7! (z0 � 3)
PC6 = PC5 ^ 4 � z1 < x1 + y0 x 7! (y0 � z0); y 7! y0; z 7! (z0 � 3)

PC10 = PC6 ^ 25 � x1 + y0 x 7! (y0 � z0); y 7! y0; z 7! (z0 � 3)

PC = (x1 = y0 � z0 ^ x1 = z0 ^ z1 = z0 � 3 ^ 4 � z1 < x1 + y0 ^ 25 � x1 + y0)

Check satisfiability with a solver (e.g., z3, cvc, yices,
boolector,stp,...)

https://github.com/Z3Prover/z3
https://cvc5.github.io/
https://yices.csl.sri.com/
https://github.com/Boolector/boolector
https://github.com/stp/stp

Symbolic execution today

I Leverages on the impressive advancements of SMT solvers
I Modern symbolic execution frameworks are not purely

symbolic and are often dynamic: Sage, Klee (open source),
Pex:
I They can follow a concrete execution while collecting

constraints along the way, or
I They can treat some of the variables concretely, and some

other symbolically
I This allows them to scale, to handle closed code or complex

queries

https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf
https://klee.github.io/
https://www.microsoft.com/en-us/research/publication/pex-white-box-test-generation-for-net/

Symbolic execution today

I C (actullay llvm) http://klee.github.io/
I Java (more than a symbolic executer)

http://babelfish.arc.nasa.gov/trac/jpf
I C# (actually .net)

http://research.microsoft.com/en-us/projects/pex/
I ...

http://klee.github.io/
http://babelfish.arc.nasa.gov/trac/jpf
http://research.microsoft.com/en-us/projects/pex/

Outline

SAT solving and verification

Theories and SMTLIB

Symbolic Execution

Further readings

Further readings

A. R. Bradley and Z. Manna.
(chap 10) The calculus of computation: decision procedures with applications to
verification.
Springer Science & Business Media, 2007.

C. Cadar, D. Dunbar, D. R. Engler, et al.
Klee: unassisted and automatic generation of high-coverage tests for complex
systems programs.
In OSDI, volume 8, pages 209–224, 2008.

L. De Moura and N. Bjørner.
Satisfiability modulo theories: introduction and applications.
Communications of the ACM, 54(9):69–77, 2011.

P. Godefroid, M. Y. Levin, and D. Molnar.
Sage: whitebox fuzzing for security testing.
Queue, 10(1):20–27, 2012.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
Solving sat and sat modulo theories: From an abstract
davis–putnam–logemann–loveland procedure to dpll(t).
J. ACM, 53(6):937–977, Nov. 2006.

	SAT solving and verification
	Theories and SMTLIB
	Symbolic Execution
	Further readings

