Software Verification Satisfiability Modulo Theory and applications Symbolic representations II

Ahmed Rezine

IDA, Linköpings Universitet

Spring 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

SAT solving and verification

Theories and SMTLIB

Symbolic Execution

Further readings

Outline

SAT solving and verification

Theories and SMTLIB

Symbolic Execution

Further readings

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Sat solvers usually take propositional formulas written in conjunctive normal (cnf):

- variables: propositional variables, e.g., x, y, z, ...
- literals: variables or their negations, e.g., $x, \overline{x}, y, \ldots$
- clause: disjunction of literals, e.g., $(x \lor \overline{y})$
- Currier Control Co
- a (partial) variable assignment associates (some of the) variables to Boolean values in {0, 1}

Basics: a well known NP-problem

Given a propositional formula (usually in cnf), does there exist a satisfying assignment (i.e., a variable assignment for which the formula evaluates to true)?

- $x \mapsto 1, y \mapsto 1, z \mapsto 0$ is a satisfying assignment for $(x \lor \overline{y}) \land (y \lor z) \land (\overline{z})$. The formula is **satisfiable**
- $(x \lor \overline{y}) \land (y \lor z) \land (\overline{z}) \land (\overline{x})$ has no satisfying assignment, it is **unsatisfiable**
- Success story with applications in hardware/software model checking, planning, combinatorial design, test pattern generation, protocol design, bioinformatics, etc.
- From 100 variables and 200 constraints in early 90s to more than a 1,000,000 variables and 5,000,000 constraints

- A unit is a clause where there is one unassigned literal while all other literals are assigned 0.
- The only chance for the current assignment to satisfy the formula is to assign 1 to unassigned literals in unit clauses

$$\blacktriangleright (x) \land (\overline{x} \lor y) \land (\overline{y} \lor z \lor s) \land (z \lor \overline{y} \lor \overline{x}) \land \dots$$

- implied assignment: x = 1, antecedent (x)
- implied assignment: y = 1, antecedent $(\overline{x} \lor y)$
- implied assignment: z = 1, antecedent $(z \lor \overline{y} \lor \overline{x})$
- implied assignment: s = 1, antecedent $(\overline{y} \lor z \lor s)$

Davis-Putnam-Logemann-Loveland (DPLL)

- decides satisfiability for sat-cnf problems
- introduced in early 60s
- basis of modern sat solvers
- idea: alternate unit propagation, choosing a value for some variable, and recursively checking the result, if does not give satisfying assignment then backtrack (remove) with opposit value

Davis-Putnam-Logemann-Loveland (DPLL)

```
Algorithm 1: DPLL-recursive(\varphi, \rho)
Input: \varphi: cnf formula, \rho: partial assignment
Output: UNSAT or satisfying assignment
(\varphi, \rho) := UnitPropagate(\varphi, \rho);
if \varphi contains an empty clause then
    return UNSAT;
if \varphi has no clauses left then
    Output \rho;
    return SAT:
I := a literal not assigned by \rho;
if (DPLL-recursive(\varphi[I], \rho \cup \{I\})) then
    return SAT:
return DPLL-recursive(\varphi[\neg I], \rho \cup \{\neg I\});
```

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

$\varphi = (x \lor y) \land (y \lor z) \land (\overline{x} \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor z)$

level	decision	formula	unit propagation
0	x = 1	$(1 \lor y) \land (y \lor z) \land (\overline{1} \lor \overline{y} \lor \overline{z}) \land (\overline{1} \lor 1)$	z = 1@0
1	y = 1	$(1 \lor 1) \land (1 \lor 1) \land (\overline{1} \lor \overline{1} \lor \overline{1}) \land (\overline{1} \lor 1)$	
1	y = 0	$(1 \lor 0) \land (0 \lor 1) \land (\overline{1} \lor \overline{0} \lor \overline{1}) \land (\overline{1} \lor 1)$	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

x = 1@0, z = 1@0, y = 0@1

$$\varphi = (a \lor \overline{b} \lor d) \land (a \lor \overline{b} \lor e) \land (\overline{b} \lor \overline{d} \lor \overline{e}) \land (a \lor b \lor c \lor d) \land (a \lor b \lor c \lor \overline{d}) \land (a \lor b \lor \overline{c} \lor e) \land (a \lor b \lor \overline{c} \lor \overline{e})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Modern solvers

(日)

 $\mathcal{O} \land \mathcal{O}$

Clause learning with non chronological backtracking

- search restarts
- lazy data-structures
- ► ...

- capture "cause" of encountered conflict as a clause
- the conflict clause is added to the formula
- If deciding x = 1 and y = 0 led to unsat then remember this by adding (x̄ ∨ y) to the formula
- learn "reasons" of discovered inconsistencies in order to avoid them in the future

Conflict clauses

....

- source nodes of implication graph can be used as a conflict clause
- ▶ here, $(\overline{x_1} \lor x_9 \lor x_{10} \lor x_{11})$ can be added as a conflict clause

- better clauses with "unique implication point"
- here, add $(\overline{x_4} \lor x_{10} \lor x_{11})$

SMTs as generalizations of SAT

Originates from automating proof-search for first order logic.

- ▶ Variables: *x*, *y*, *z*, ...
- Constants: a, b, c, ...
- ▶ N-ary functions: *f*, *g*, *h*, ...
- ▶ N-ary predicates: *p*, *q*, *r*, ...
- Atoms: \bot , \top , $p(t_1, \ldots, t_n)$
- Literals: atoms or their negation
- A FOL formula is a literal, boolean combinations of formulas, or quantified (∃, ∀) formulas.

Evaluation of formula φ , with respect to interpretation I over non-empty (possibly infinite) domains for variables and constants gives true or false (resp. $I \models \varphi$ or $I \not\models \varphi$) A formula φ is:

- satisfiable if $I \models \varphi$ for **some** interpretation I
- valid if $I \models \varphi$ for **all** interpretations *I*

Satisfiability of FOL is undecidable. Instead, target decidable or domain-specific fragments.

$$\varphi \triangleq g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

EUF: Equality over Uninterpreted functionsSatisfiable?

$$\begin{aligned} \varphi &\triangleq (x_1 \geq 0) \land (x_1 < 1) \\ \land ((f(x_1) = f(0)) \Rightarrow (rd(wr(a, x_2, x_3), x_2 + x_1) = x_3 + 1) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$arphi \triangleq (x_1 \ge 0) \land (x_1 < 1) \land ((f(x_1) = f(0)) \Rightarrow (rd(wr(a, x_2, x_3), x_2 + x_1) = x_3 + 1))$$

involves arrays with read (rd) and write (wr):
∀arr ∀i ∀val. (rd(wr(arr, i, val), i) = val)
∀arr ∀i ∀j ∀val. (i ≠ j ⇒ rd(wr(arr, i, val), j)) = rd(arr, j))

$$\varphi \triangleq (x_1 \ge 0) \land (x_1 < 1) \land ((f(x_1) = f(0)) \Rightarrow (rd(wr(a, x_2, x_3), x_2 + x_1) = x_3 + 1))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Linear Integer Arithmetic (LIA)

$$\varphi \triangleq (x_1 \ge 0) \land (x_1 < 1) \land ((f(x_1) = f(0)) \Rightarrow (rd(wr(a, x_2, x_3), x_2 + x_1) = x_3 + 1))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Linear Integer Arithmetic (LIA)

Equality over Uninterpreted functions (EUF)

Arrays (A)

Introduction to SMT

Given a quantifier free FOL formula and a combination of theories, is there an interpretation to the free variables that makes the formula true?

$$egin{array}{rcl} arphi & \triangleq & (x_1 \geq 0) \land (x_1 < 1) \ \land ((f(x_1) = f(0)) \Rightarrow (\mathit{rd}(\mathit{wr}(a, x_2, x_3), x_2 + x_1) = x_3 + 1) \end{array}$$

- ► LIA: $x_1 = 0$
- EUF: $f(x_1) = f(0)$
- A: $rd(wr(a, x_2, x_3), x_2) = x_3$
- Bool: $rd(wr(P, x_2, x_3), x_2) = x_3 + 1$
- ► LIA: ⊥

Introduction to SMT

- Sometimes more natural to express in logics other than propositional logic
- SMT decide satisfiablity of ground FO formulas wrt. background theory
- Many applications: Model checking, predicate abstraction, symbolic execution, scheduling, test generation, ...

SAT solving and verification

Theories and SMTLIB

Symbolic Execution

Further readings

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ●

SMT competition and SMTLIB

- Drive development, since 2005
- 19th instance at https://smt-comp.github.io/2024/
- Papers at SAT, CADE, CAV, FMCAD, TACAS, ...
- SMTLIB key initiative to promote common input and output for SMT solvers, benchmarks, tutorials, ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

at http://smtlib.cs.uiowa.edu/

Equality with uninterpreted Functions (EUF)

• Consider $a * (f(b) + f(c)) = d \wedge b * (f(a) + f(c)) \neq d \wedge a = b$

- Formula is unsat, could be abstracted with
- $\blacktriangleright h(a,g(f(b),f(c))) = d \wedge h(b,g(f(b),f(c))) \neq d \wedge a = b$
- EUF used to abstracted non-supported theories such as non-linear multiplication or ALUs in circuits.

Several restricted fragments, whether real or integer variables:

- ▶ Bounds $x \sim k$ with $\sim \in \{<, \leq, =, \geq, >\}$
- ▶ Difference logic $x y \sim k$ with $\sim \in \{<, \leq, =, \geq, >\}$

- ▶ UTVPI $\pm x \pm y \sim k$ with $\sim \in \{<, \leq, =, \geq, >\}$
- Linear Arithmetic $x + 2y 3z \le 2$
- ▶ Non-linear arithmetic $xy 4xy^2 + 2z \le 2$

Axioms:

- $\forall a \forall i \forall v (read(write(a, i, v), i) = v)$
- $\blacktriangleright \forall a \forall i \forall j \forall v (i \neq j \Rightarrow read(write(a, i, v), j)) = read(a, j))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Used for software (arrays) and hardware (memories) verification

- String like: concatenation, extraction, ...
- Logical: bit-wise or, not, and...
- Arithmetic: add, substract, multiply, ...

▶ $a[0:1] \neq b[0:1] \land (a|b) = c \land c[0] = 0 \land a[1] + b[1] = 0$

SAT solving and verification

Theories and SMTLIB

Symbolic Execution

Further readings

- Most common form of software validation
- Explores only one possible execution at a time
- For each new value, run a new test.
- On a 32 bit machine, if(i==2023) bug() would require 2³² different values to make sure there is no bug.
- The idea in symbolic testing is to associate symbolic values to the variables

Symbolic Testing

- Main idea by JC. King in "Symbolic Execution and Program Testing" in the 70s
- Use symbolic values instead of concrete ones
- Along the path, maintain a Path Constraint (PC) and a symbolic state (σ)
- PC collects constraints on variables' values along a path,
- \triangleright σ associates variables to symbolic expressions,
- We get concrete values if PC is satisfiable
- The program can be run on these values
- Negate a condition in the path constraint to get another path

Symbolic Execution: a simple example

- Can we get to the ERROR? explore using SSA forms.
- Useful to check array out of bounds, assertion violations, etc.

floo(int x,y,z){	$PC_1 = true$			
2 x = y - z;	$PC_2 = PC_1$	$x \mapsto x_0, y \mapsto y_0, z \mapsto z_0$		
$3 if(x=z)$ {	$PC_3 = PC_2 \wedge x_1 = y_0 - z_0$	$x \mapsto (y_0 - z_0), y \mapsto y_0, z \mapsto z_0$		
4 z = z - 3;	$PC_4 = PC_3 \wedge x_1 = z_0$	$x \mapsto (y_0 - z_0), y \mapsto y_0, z \mapsto z_0$		
5 if (4*z < x + y)	$PC_5 = PC_4 \wedge z_1 = z_0 - 3$	$x \mapsto (y_0 - z_0), y \mapsto y_0, z \mapsto (z_0 - 3)$		
6 if $(25 > x + y)$ {	$PC_6 = PC_5 \wedge 4 * z_1 < x_1 + y_0$	$x \mapsto (y_0 - z_0), y \mapsto y_0, z \mapsto (z_0 - 3)$		
7				
8 }				
9 else{				
10 ERROR;	$PC_{10} = PC_6 \wedge 25 < x_1 + y_0$	$x \mapsto (y_0 - z_0), y \mapsto y_0, z \mapsto (z_0 - 3)$		
11 }				
12 }				
13 }				
14				
$PC = (x_1 = y_0 - z_0 \land x_1 = z_0 \land z_1 = z_0 - 3 \land 4 * z_1 < x_1 + y_0 \land 25 \le x_1 + y_0)$				

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Check satisfiability with a solver (e.g., z3, cvc, yices, boolector,stp,...)

- Leverages on the impressive advancements of SMT solvers
- Modern symbolic execution frameworks are not purely symbolic and are often dynamic: Sage, Klee (open source), Pex:
 - They can follow a concrete execution while collecting constraints along the way, or
 - They can treat some of the variables concretely, and some other symbolically
- This allows them to scale, to handle closed code or complex queries

- C (actullay llvm) http://klee.github.io/
- Java (more than a symbolic executer) http://babelfish.arc.nasa.gov/trac/jpf
- C# (actually .net)
 http://research.microsoft.com/en-us/projects/pex/

SAT solving and verification

Theories and SMTLIB

Symbolic Execution

Further readings

Further readings

A. R. Bradley and Z. Manna.

(chap 10) The calculus of computation: decision procedures with applications to verification.

Springer Science & Business Media, 2007.

C. Cadar, D. Dunbar, D. R. Engler, et al.

Klee: unassisted and automatic generation of high-coverage tests for complex systems programs.

In OSDI, volume 8, pages 209-224, 2008.

L. De Moura and N. Bjørner. Satisfiability modulo theories: introduction and applications. *Communications of the ACM*, 54(9):69–77, 2011.

P. Godefroid, M. Y. Levin, and D. Molnar. Sage: whitebox fuzzing for security testing. *Queue*, 10(1):20–27, 2012.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving sat and sat modulo theories: From an abstract davis-putnam-logemann-loveland procedure to dpll(t). J. ACM, 53(6):937-977, Nov. 2006.