Software Verification Satisfiability Modulo Theory and applications Symbolic representations II

Ahmed Rezine

IDA, Linköpings Universitet

Spring 2021

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

Lazy SMT solvers

Theories and SMTLIB

Nelson-Oppen Approach

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Symbolic Execution

Further readings

Introduction

Originates from automating proof-search for first order logic.

- ▶ Variables: *x*, *y*, *z*, ...
- ▶ Constants: *a*, *b*, *c*, ...
- ▶ N-ary functions: *f*, *g*, *h*, ...
- ▶ N-ary predicates: *p*, *q*, *r*, ...
- Atoms: \bot , \top , $p(t_1, \ldots, t_n)$
- Literals: atoms or their negation
- A FOL formula is a literal, boolean combinations of formulas, or quantified (∃, ∀) formulas.

Evaluation of formula φ , with respect to interpretation I over non-empty (possibly infinite) domains for variables and constants gives true or false (resp. $I \models \varphi$ or $I \not\models \varphi$) A formula φ is:

- satisfiable if $I \models \varphi$ for **some** interpretation I
- valid if $I \models \varphi$ for **all** interpretations *I*

Satisfiability of FOL is undecidable. Instead, target decidable or domain-specific fragments.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\varphi \triangleq g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

EUF: Equality over Uninterpreted functionsSatisfiable?

$$\begin{aligned} \varphi &\triangleq & (x_1 \geq 0) \land (x_1 < 1) \\ \land ((f(x_1) = f(0)) \Rightarrow (\mathit{rd}(\mathit{wr}(P, x_2, x_3), x_2 + x_1) = x_3 + 1) \end{aligned}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

$$\varphi \triangleq (x_1 \ge 0) \land (x_1 < 1) \land ((f(x_1) = f(0)) \Rightarrow (rd(wr(P, x_2, x_3), x_2 + x_1) = x_3 + 1))$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Linear Integer Arithmetic (LIA)

$$\varphi \triangleq (x_1 \ge 0) \land (x_1 < 1) \land ((f(x_1) = f(0)) \Rightarrow (rd(wr(P, x_2, x_3), x_2 + x_1) = x_3 + 1))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Linear Integer Arithmetic (LIA)

Equality over Uninterpreted functions (EUF)

Arrays (A)

Introduction

Given a quantifier free FOL formula and a combination of theories, is there an interpretation to the free variables that makes the formula true?

$$\varphi \triangleq (x_1 \ge 0) \land (x_1 < 1) \\ \land ((f(x_1) = f(0)) \Rightarrow (rd(wr(P, x_2, x_3), x_2 + x_1) = x_3 + 1)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ► LIA: $x_1 = 0$
- EUF: $f(x_1) = f(0)$
- A: $rd(wr(P, x_2, x_3), x_2) = x_3$
- Bool: $rd(wr(P, x_2, x_3), x_2) = x_3 + 1$
- ► LIA: ⊥

- Sometimes more natural to express in logics other than propositional logic
- SMT decide satisfiablity of ground FO formulas wrt. background theory
- Many applications: Model checking, predicate abstraction, symbolic execution, scheduling, test generation, ...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction: from SAT to SMT

Eager approach with "bit-blasting" (UCLID):

- Encode SMT formula in propositional logic
- Use off-the-shelf SAT solver
- Still dominant for bit-vector arithmetic
- Lazy-approach (CVC4, MathSat, Yices, Z3, ...)
 - Combine SAT (CDCL) and theory solvers
 - Sat-solver enumerates models for the boolean part

Theory solvers check satisfiability in the theory

- remove terms f(a), f(b), f(c) by replacing with fresh constants A, B, C.
- ▶ add $a = b \Rightarrow A = B$, $a = c \Rightarrow A = C$ and $b = c \Rightarrow B = C$
- for n constants use logn bits to encode value of each constant a, b, ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- each a = b is replaced by $P_{a,b}$
- ▶ add $P_{a,b} \land P_{b,c} \Rightarrow P_{a,c}$

Outline

Lazy SMT solvers

Theories and SMTLIB

Nelson-Oppen Approach

Symbolic Execution

Further readings

- Restrict theory solver to conjunctions of constraints
- Convert to disjunctive normal form and check one conjunction at a time

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Or use Sat to enumerate conjuncts

Basic lazy SMT

```
_{1} \psi = to_cnf(\varphi);
  while(true){
2
     res, M = check\_SAT(\psi);
3
     if( res){
4
        M_T = to_theory(M);
5
        res = check_theory (M_T);
6
        if(res)
7
           return SAT:
8
        else
9
           \psi \wedge = \neg M;
10
     }else
11
        return UNSAT:
12
13 }
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Integrating SMT and SAT

$$(1:g(a)=c)\wedge((\overline{2}:f(g(a))\neq f(c))\vee(3:g(a)=d))\wedge(\overline{4}:c\neq d)$$

• add
$$\{\overline{1} \lor 2 \lor 4\}$$

$$\blacktriangleright M = \{1, 2, 3, \overline{4}\}$$

▶
$$N = \{(1 : g(a) = c), (2 : f(g(a)) = f(c)), (3 : g(a) = d), (\overline{4} : c \neq d)\}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- $\blacktriangleright \text{ add } \{\overline{1} \lor \overline{2} \lor \overline{3}, \overline{4}\}\$
- SAT solver declares unsat

Integrating SMT and SAT

$$\begin{array}{lll} \psi & \triangleq & & \psi_{\mathbb{B}} \triangleq \\ c_1 & : & \neg (2x_2 - x_3 > 2) \lor (x_1 + x_3 \le 5) & & \neg A_{11} \lor A_{12} \\ c_2 & : & \neg (x_1 - x_3 \le 5) \lor (x_1 - x_5 \le 1) & & \neg A_{21} \lor A_{22} \\ c_3 & : & \neg (3x_1 - 2x_2 \le 3) \lor \neg (x_1 - x_3 \le 5) & & \neg A_{31} \lor \neg A_{32} \\ c_4 & : & \neg (3x_1 - x_3 \le 6) \lor \neg (x_1 + x_3 \le 5) & & \neg A_{41} \lor \neg A_{42} \\ c_5 & : & (x_1 + x_3 \le 5) \lor (3x_1 - 2x_2 \le 3) & & A_{51} \lor A_{31} \\ c_6 & : & (x_2 - x_4 \le 6) \lor \neg (x_1 + x_3 \le 5) & & A_{61} \lor \neg A_{62} \\ c_7 & : & (x_1 + x_3 \le 5) \lor (x_3 = 3x_5 + 4) \lor \neg (x_1 - x_3 \le 5) & & A_{71} \lor A_{72} \lor \neg A_{73} \end{array}$$

$$M = \{A_{12}, A_{21}, \neg A_{31}, \neg A_{41}, A_{61}, A_{72}\}$$

$$M_T = \{(x_1 + x_3 \le 5), (x_1 - x_5 \le 1), \neg (3x_1 - 2x_2 \le 3), \\ \neg (3x_1 - x_3 \le 6), (x_2 - x_4 \le 6), (x_3 = 3x_5 + 4)\}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

▶ Theory solver: M_T is UNSAT. Add $\neg M$ to ψ

Lazy SMT solvers

Theories and SMTLIB

Nelson-Oppen Approach

Symbolic Execution

Further readings

SMT competition and SMTLIB

- Drive development, since 2005
- ▶ 15th instance at https://smt-comp.github.io/2020
- Papers at SAT, CADE, CAV, FMCAD, TACAS, ...
- SMTLIB key initiative to promote common input and output for SMT solvers, benchmarks, tutorials, ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

at http://smtlib.cs.uiowa.edu/

Equality with uninterpreted Functions (EUF)

• Consider $a * (f(b) + f(c)) = d \wedge b * (f(a) + f(c)) \neq d \wedge a = b$

- Formula is unsat, could be abstracted with
- $\blacktriangleright h(a,g(f(b),f(c))) = d \wedge h(b,g(f(b),f(c))) \neq d \wedge a = b$
- EUF used to abstracted non-supported theories such as non-linear multiplication or ALUs in circuits.

Several restricted fragments, whether real or integer variables:

- ▶ Bounds $x \sim k$ with $\sim \in \{<, \leq, =, \geq, >\}$
- ▶ Difference logic $x y \sim k$ with $\sim \in \{<, \leq, =, \geq, >\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ▶ UTVPI $\pm x \pm y \sim k$ with $\sim \in \{<, \leq, =, \geq, >\}$
- Linear Arithmetic $x + 2y 3z \le 2$
- ▶ Non-linear arithmetic $xy 4xy^2 + 2z \le 2$

Axioms:

- $\forall a \forall i \forall v (read(write(a, i, v), i) = v)$
- $\blacktriangleright \forall a \forall i \forall j \forall v (i \neq j \Rightarrow read(write(a, i, v), j)) = read(a, j))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Used for software (arrays) and hardware (memories) verification

- String like: concatenation, extraction, ...
- Logical: bit-wise or, not, and...
- Arithmetic: add, substract, multiply, ...

▶ $a[0:1] \neq b[0:1] \land (a|b) = c \land c[0] = 0 \land a[1] + b[1] = 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outline

Lazy SMT solvers

Theories and SMTLIB

Nelson-Oppen Approach

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Symbolic Execution

Further readings

$$x = y + 1 \land a = write(b, x+1, 0) \land (read(a, y+z) = 1 \lor f(x+1) \neq f(z))$$

Such formulas can naturally arise in software verification. Need to reason over:

- Linear arithmetic
- Arrays
- uninterpreted functions
- Under some restrictions, Nelson-Oppen allows to combine individual theories in order to answer combinations like above.
- We can consider conjunctions of literals (put in dnf)

$1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$

- Given T_1, T_2 such that $\Sigma_1 \cap \Sigma_2 = \{=\}$
- ▶ Where each satisfiable formula in T₁ or in T₂ is also satisfiable over an interpretation with an infinite domain (stably infinite)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Then we can combine two decision procedures P1, P2 for $T_1 \cup T2$ as follows.

Phase 1: idea

- First transform any $(T_1 \cup T_2)$ -conjunction F into the conjunction of a T_1 -formulas and a T_2 -formula
- For this, purify the formula by introducing new variables and conjunctions each time a function or a predicate mixes terms from different theories

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Phase 1: example1

- ▶ $1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$
- ▶ introduce w_1, w_2 to obtain $(1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2)$ and $(f(x) \ne f(w_1) \land f(x) \ne f(w_2))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ▶ $(1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2)$ is in $T_{\mathbb{Z}}$, and
- $(f(x) \neq f(w_1) \land f(x) \neq f(w_2))$ is in T_{UF}

Phase 1: example2

$$f(x) = x + y \land x \le y + z \land x + z \le y \land y = 1 \land f(x) \ne f(2)$$

• replace
$$f(x) = x + y$$
 by $w_1 = x + y \land w_1 = f(x)$

• replace
$$f(x) \neq f(2)$$
 by $f(x) \neq f(w_2) \land w_2 = 2$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Phase 2: guess and check

Int V = free(F₁) ∩ free(F₂) where F₁ ∧ F₂ obtained after purification

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• $F_1 \wedge F_2$ is satisfiable iff

• there is an equivalence relation \sim over V s.t

•
$$\alpha = \bigwedge_{(u \sim v)} u = v \land \bigwedge_{(u \not\sim v)} u \neq v$$
, and
• both $F_1 \land \alpha$ and $F_2 \land \alpha$ are satisfiable

• otherwise $F_1 \wedge F_2$ is unsatisfiable

Non-deterministic Nelson-Oppen

Phase 2: example 1

• Consider
$$F: 1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$$

• with
$$F_{\mathbb{Z}}: 1 \leq x \land x \leq 2 \land w_1 = 1 \land w_2 = 2$$
, and

$$F_{UF}: f(x) \neq f(w_1) \land f(x) \neq f(w_2)$$

The shared variables are $\{x, w_1, w_2\}$ which gives the following possible equivalences

• {{
$$x, w_1, w_2$$
}} unsat because $x = w_1$ and $f(x) \neq f(w_1)$

• {{
$$x, w_1$$
}, { w_2 }} unsat because $x = w_1$ and $f(x) \neq f(w_1)$

- {{ x, w_2 }, { w_1 }} unsat because $x = w_2$ and $f(x) \neq f(w_2)$
- $\{\{x\}, \{w_1, w_2\}\}$ unsat because $w_1 = w_2$ and $w_1 = 1 \land w_2 = 2$

▶ {{x}, {
$$w_1$$
}, { w_2 }} unsat because $x = 1 \lor x = 2$ and $w_1 = 1 \land w_2 = 2$

So *F* is $(T_{\mathbb{Z}} \cup T_{UF})$ -unsatisfiable

Non-deterministic Nelson-Oppen

Incremental:

Consider $F: f(x) = x + y \land x < y + z \land x + z < y \land y = 1 \land f(x) \neq f(2).$ • $F_{\mathbb{Z}}: w_1 = x + y \land x < y + z \land x + z < y \land y = 1 \land w_2 = 2$ $F_{IJF}: w_1 = f(x) \wedge f(x) \neq f(w_2)$ \blacktriangleright shared variables $\{x, w_1, w_2\}$. 1. attempt $x = w_1$, gives y = 0 contradicts y = 1, so $x \neq w_1$ 2. $F_{\mathbb{Z}} \wedge x \neq w_1$ and $F_{UF}x \neq w_1$ are satisfiable 3. attempt $x = w_2$, but $f(x) \neq f(w_2)$ so $x \neq w_2$ 4. $F_{\mathbb{Z}} \land x \neq w_1 \land x \neq w_2$ and $F_{UF} x \neq w_1 \land x \neq w_2$ are satisfiable 5. attempt $w_1 = w_2$, no contradiction $\{\{x\}, \{w_1, w_2\}\}$ make F is $(T_{\mathbb{Z}} \cup T_{UF})$ -satisfiable

Outline

Lazy SMT solvers

Theories and SMTLIB

Nelson-Oppen Approach

Symbolic Execution

Further readings

- Most common form of software validation
- Explores only one possible execution at a time
- For each new value, run a new test.
- On a 32 bit machine, if(i==2014) bug() would require 2³² different values to make sure there is no bug.
- The idea in symbolic testing is to associate symbolic values to the variables

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Symbolic Testing

- Main idea by JC. King in "Symbolic Execution and Program Testing" in the 70s
- Use symbolic values instead of concrete ones
- Along the path, maintain a Path Constraint (PC) and a symbolic state (σ)
- PC collects constraints on variables' values along a path,
- \triangleright σ associates variables to symbolic expressions,
- We get concrete values if PC is satisfiable
- The program can be run on these values
- Negate a condition in the path constraint to get another path

Symbolic Execution: a simple example

- Can we get to the ERROR? explore using SSA forms.
- Useful to check array out of bounds, assertion violations, etc.

floo(int x,y,z){	$PC_1 = true$	
2 x = y - z;	$PC_2 = PC_1$	$x \mapsto x_0, y \mapsto y_0, z \mapsto z_0$
$3 if(x=z)$ {	$PC_3 = PC_2 \wedge x_1 = y_0 - z_0$	$x \mapsto (y_0 - z_0), y \mapsto y_0, z \mapsto z_0$
4 z = z - 3;	$PC_4 = PC_3 \wedge x_1 = z_0$	$x \mapsto (y_0 - z_0), y \mapsto y_0, z \mapsto z_0$
$5 if(4*z < x + y){$	$PC_5 = PC_4 \wedge z_1 = z_0 - 3$	$x \mapsto (y_0 - z_0), y \mapsto y_0, z \mapsto (z_0 - 3)$
6 $if(25 > x + y) \{$	$PC_6 = PC_5 \wedge 4 * z_1 < x_1 + y_0$	$x \mapsto (y_0 - z_0), y \mapsto y_0, z \mapsto (z_0 - 3)$
7		
8 }		
9 else{		
<pre>10 ERROR;</pre>	$PC_{10} = PC_6 \land 25 < x_1 + y_0$	$x \mapsto (y_0 - z_0), y \mapsto y_0, z \mapsto (z_0 - 3)$
11 }		
12 }		
13 }		
14		
$PC = (x_1 = y_0 - z_0 \land x_1 = z_0 \land z_1 = z_0 - 3 \land 4 * z_1 < x_1 + y_0 \land 25 < x_1 + y_0)$		

Check satisfiability with a solver (e.g., http://rise4fun.com/Z3)

- Leverages on the impressive advancements of SMT solvers
- Modern symbolic execution frameworks are not purely symbolic and are often dynamic: Sage, Klee (open source), Pex:
 - They can follow a concrete execution while collecting constraints along the way, or
 - They can treat some of the variables concretely, and some other symbolically
- This allows them to scale, to handle closed code or complex queries

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outline

Lazy SMT solvers

Theories and SMTLIB

Nelson-Oppen Approach

Symbolic Execution

Further readings

Further readings

A. R. Bradley and Z. Manna.

(chap 10) The calculus of computation: decision procedures with applications to verification.

Springer Science & Business Media, 2007.

C. Cadar, D. Dunbar, D. R. Engler, et al.

Klee: unassisted and automatic generation of high-coverage tests for complex systems programs.

In OSDI, volume 8, pages 209-224, 2008.

L. De Moura and N. Bjørner. Satisfiability modulo theories: introduction and applications. *Communications of the ACM*, 54(9):69–77, 2011.

P. Godefroid, M. Y. Levin, and D. Molnar. Sage: whitebox fuzzing for security testing. *Queue*, 10(1):20–27, 2012.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving sat and sat modulo theories: From an abstract davis-putnam-logemann-loveland procedure to dpll(t). J. ACM, 53(6):937-977, Nov. 2006.