
Software Verification

Satisfiability Modulo Theory and applications
Symbolic representations II

Ahmed Rezine

IDA, Linköpings Universitet

Spring 2021

Outline

Lazy SMT solvers

Theories and SMTLIB

Nelson-Oppen Approach

Symbolic Execution

Further readings

Introduction

Originates from automating proof-search for first order logic.
I Variables: x ; y ; z ; :::
I Constants: a; b; c; :::
I N-ary functions: f ; g ; h; :::
I N-ary predicates: p; q; r ; :::
I Atoms: ?;>; p(t1; : : : ; tn)
I Literals: atoms or their negation
I A FOL formula is a literal, boolean combinations of formulas,

or quantified (9, 8) formulas.
Evaluation of formula ', with respect to interpretation I over
non-empty (possibly infinite) domains for variables and constants
gives true or false (resp. I j= ' or I 6j= ')

Satisfiability and Validity

A formula ' is:
I satisfiable if I j= ' for some interpretation I
I valid if I j= ' for all interpretations I

Satisfiability of FOL is undecidable. Instead, target decidable or
domain-specific fragments.

Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , g(a) = c ^ (f (g(a)) 6= f (c) _ g(a) = d) ^ c 6= d

I EUF: Equality over Uninterpreted functions
I Satisfiable?

Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , (x1 � 0) ^ (x1 < 1)
^((f (x1) = f (0))) (rd(wr(P; x2; x3); x2 + x1) = x3 + 1)

Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , (x1 � 0) ^ (x1 < 1)
^((f (x1) = f (0))) (rd(wr(P; x2; x3); x2 + x1) = x3 + 1)

I Linear Integer Arithmetic (LIA)

Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , (x1 � 0) ^ (x1 < 1)
^((f (x1) = f (0))) (rd(wr(P; x2; x3); x2 + x1) = x3 + 1)

I Linear Integer Arithmetic (LIA)
I Equality over Uninterpreted functions (EUF)
I Arrays (A)

Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , (x1 � 0) ^ (x1 < 1)
^((f (x1) = f (0))) (rd(wr(P; x2; x3); x2 + x1) = x3 + 1)

I LIA: x1 = 0
I EUF: f (x1) = f (0)
I A: rd(wr(P; x2; x3); x2) = x3
I Bool: rd(wr(P; x2; x3); x2) = x3 + 1
I LIA: ?

Introduction

I Sometimes more natural to express in logics other than
propositional logic

I SMT decide satisfiablity of ground FO formulas wrt.
background theory

I Many applications: Model checking, predicate abstraction,
symbolic execution, scheduling, test generation, ...

Introduction: from SAT to SMT

I Eager approach with “bit-blasting” (UCLID):
I Encode SMT formula in propositional logic
I Use off-the-shelf SAT solver
I Still dominant for bit-vector arithmetic

I Lazy-approach (CVC4, MathSat, Yices, Z3, ...)
I Combine SAT (CDCL) and theory solvers
I Sat-solver enumerates models for the boolean part
I Theory solvers check satisfiability in the theory

Eager approach e.g.: EUF

I remove terms f (a); f (b); f (c) by replacing with fresh
constants A;B;C .

I add a = b) A = B, a = c) A = C and b = c) B = C
I for n constants use logn bits to encode value of each constant

a; b; :::
I each a = b is replaced by Pa;b

I add Pa;b ^ Pb;c) Pa;c

Outline

Lazy SMT solvers

Theories and SMTLIB

Nelson-Oppen Approach

Symbolic Execution

Further readings

Lazy SMT solvers

I Restrict theory solver to conjunctions of constraints
I Convert to disjunctive normal form and check one conjunction

at a time
I Or use Sat to enumerate conjuncts

Basic lazy SMT

1 = to_cnf (') ;
2 while (t r u e) {
3 r e s , M = check_SAT() ;
4 if (r e s) {
5 MT = to_theo ry (M) ;
6 r e s = check_theory (MT) ;
7 if (r e s)
8 return SAT;
9 else

10 ^ = :M ;
11 }else
12 return UNSAT;
13 }

Integrating SMT and SAT

(1 : g(a) = c)^((2 : f (g(a)) 6= f (c))_(3 : g(a) = d))^(4 : c 6= d)

I M = f1; 2; 4g
I N = f(1 : g(a) = c); (2 : f (g(a)) 6= f (c)); (4 : c 6= d)g is

unsat
I add f1 _ 2 _ 4g
I M = f1; 2; 3; 4g
I N = f(1 : g(a) = c); (2 : f (g(a)) = f (c)); (3 : g(a) = d); (4 :

c 6= d)g
I add f1 _ 2 _ 3; 4g
I SAT solver declares unsat

Integrating SMT and SAT

 ,

c1 : :(2x2 � x3 > 2) _ (x1 + x3 � 5)
c2 : :(x1 � x3 � 5) _ (x1 � x5 � 1)
c3 : :(3x1 � 2x2 � 3) _ :(x1 � x3 � 5)
c4 : :(3x1 � x3 � 6) _ :(x1 + x3 � 5)
c5 : (x1 + x3 � 5) _ (3x1 � 2x2 � 3)
c6 : (x2 � x4 � 6) _ :(x1 + x3 � 5)
c7 : (x1 + x3 � 5) _ (x3 = 3x5 + 4) _ :(x1 � x3 � 5)

 B ,

:A11 _ A12
:A21 _ A22
:A31 _ :A32
:A41 _ :A42
A51 _ A31
A61 _ :A62
A71 _ A72 _ :A73

I M = fA12;A21;:A31;:A41;A61;A72g

I MT = f(x1 + x3 � 5); (x1 � x5 � 1);:(3x1 � 2x2 � 3);
:(3x1 � x3 � 6); (x2 � x4 � 6); (x3 = 3x5 + 4)g

I Theory solver: MT is UNSAT. Add :M to

Outline

Lazy SMT solvers

Theories and SMTLIB

Nelson-Oppen Approach

Symbolic Execution

Further readings

SMT competition and SMTLIB

I Drive development, since 2005
I 15th instance at https://smt-comp.github.io/2020
I Papers at SAT, CADE, CAV, FMCAD, TACAS, ...
I SMTLIB key initiative to promote common input and output

for SMT solvers, benchmarks, tutorials, ...
I at http://smtlib.cs.uiowa.edu/

https://smt-comp.github.io/2020
http://smtlib.cs.uiowa.edu/

Equality with uninterpreted Functions (EUF)

I Consider a � (f (b) + f (c)) = d ^ b � (f (a) + f (c)) 6= d ^ a = b
I Formula is unsat, could be abstracted with
I h(a; g(f (b); f (c))) = d ^ h(b; g(f (b); f (c))) 6= d ^ a = b
I EUF used to abstracted non-supported theories such as

non-linear multiplication or ALUs in circuits.

Arithmetic

Several restricted fragments, whether real or integer variables:
I Bounds x � k with �2 f<;�;=;�; >g
I Difference logic x � y � k with �2 f<;�;=;�; >g
I UTVPI �x � y � k with �2 f<;�;=;�; >g
I Linear Arithmetic x + 2y � 3z � 2
I Non-linear arithmetic xy � 4xy2 + 2z � 2

Arrays

I Special functions read and write
I Axioms:

I 8a8i8v(read(write(a; i ; v); i) = v)
I 8a8i8j8v(i 6= j) read(write(a; i ; v); j)) = read(a; j))

I Used for software (arrays) and hardware (memories)
verification

Bit vectors

I Operations on vectors of bits
I String like: concatenation, extraction, ...
I Logical: bit-wise or, not, and...
I Arithmetic: add, substract, multiply, ...

I a[0 : 1] 6= b[0 : 1] ^ (ajb) = c ^ c[0] = 0 ^ a[1] + b[1] = 0

Outline

Lazy SMT solvers

Theories and SMTLIB

Nelson-Oppen Approach

Symbolic Execution

Further readings

Combining Decision Procedures

x = y+1^a = write(b; x+1; 0)^(read(a; y+z) = 1_f (x+1) 6= f (z))

Such formulas can naturally arise in software verification. Need to
reason over:
I Linear arithmetic
I Arrays
I uninterpreted functions

I Under some restrictions, Nelson-Oppen allows to combine
individual theories in order to answer combinations like above.

I We can consider conjunctions of literals (put in dnf)

Example

1 � x ^ x � 2 ^ f (x) 6= f (1) ^ f (x) 6= f (2)

I In TZ 1 � x ^ x � 2 implies x 2 f1; 2g
I So f (x) = f (1) or f (x) = f (2)

Non-deterministic Nelson-Oppen

I Given T1;T2 such that Σ1 \ Σ2 = f=g
I Where each satisfiable formula in T1 or in T2 is also satisfiable

over an interpretation with an infinite domain (stably infinite)
I Then we can combine two decision procedures P1;P2 for

T1 [T2 as follows.

Non-deterministic Nelson-Oppen

Phase 1: idea
I First transform any (T1 [T2)-conjunction F into the

conjunction of a T1-formulas and a T2-formula
I For this, purify the formula by introducing new variables and

conjunctions each time a function or a predicate mixes terms
from different theories

Non-deterministic Nelson-Oppen

Phase 1: example1
I 1 � x ^ x � 2 ^ f (x) 6= f (1) ^ f (x) 6= f (2)
I introduce w1;w2 to obtain (1 � x ^ x � 2 ^w1 = 1 ^w2 = 2)

and (f (x) 6= f (w1) ^ f (x) 6= f (w2))
I (1 � x ^ x � 2 ^ w1 = 1 ^ w2 = 2) is in TZ, and
I (f (x) 6= f (w1) ^ f (x) 6= f (w2)) is in TUF

Non-deterministic Nelson-Oppen

Phase 1: example2
I f (x) = x + y ^ x � y + z ^ x + z � y ^ y = 1 ^ f (x) 6= f (2)
I replace f (x) = x + y by w1 = x + y ^ w1 = f (x)
I replace f (x) 6= f (2) by f (x) 6= f (w2) ^ w2 = 2
I This gives the equisatisfiable conjunction

(w1 = x + y ^ x � y + z ^ x + z � y ^ y = 1^w2 = 2) in TZ

and (w1 = f (x) ^ f (x) 6= f (w2) in TUF

Non-deterministic Nelson-Oppen

Phase 2: guess and check
I let V = free(F1) \ free(F2) where F1 ^ F2 obtained after

purification
I F1 ^ F2 is satisfiable iff

I there is an equivalence relation � over V s.t
I � =

V
(u�v) u = v ^

V
(u 6�v) u 6= v , and

I both F1 ^ � and F2 ^ � are satisfiable
I otherwise F1 ^ F2 is unsatisfiable

Non-deterministic Nelson-Oppen

Phase 2: example 1
I Consider F : 1 � x ^ x � 2 ^ f (x) 6= f (1) ^ f (x) 6= f (2)
I with FZ : 1 � x ^ x � 2 ^ w1 = 1 ^ w2 = 2, and
I FUF : f (x) 6= f (w1) ^ f (x) 6= f (w2)

The shared variables are fx ;w1;w2g which gives the following
possible equivalences
I ffx ;w1;w2gg unsat because x = w1 and f (x) 6= f (w1)
I ffx ;w1g; fw2gg unsat because x = w1 and f (x) 6= f (w1)
I ffx ;w2g; fw1gg unsat because x = w2 and f (x) 6= f (w2)
I ffxg; fw1;w2gg unsat because w1 = w2 and w1 = 1 ^ w2 = 2
I ffxg; fw1g; fw2gg unsat because x = 1 _ x = 2 and

w1 = 1 ^ w2 = 2
So F is (TZ [TUF)-unsatisfiable

Non-deterministic Nelson-Oppen

Incremental:
I Consider

F : f (x) = x +y ^x � y +z^x +z � y ^y = 1^ f (x) 6= f (2).
I FZ : w1 = x + y ^ x � y + z ^ x + z � y ^ y = 1 ^ w2 = 2
I FUF : w1 = f (x) ^ f (x) 6= f (w2)
I shared variables fx ;w1;w2g.

1. attempt x = w1, gives y = 0 contradicts y = 1, so x 6= w1

2. FZ ^ x 6= w1 and FUF x 6= w1 are satisfiable
3. attempt x = w2, but f (x) 6= f (w2) so x 6= w2

4. FZ ^ x 6= w1 ^ x 6= w2 and FUF x 6= w1 ^ x 6= w2 are satisfiable
5. attempt w1 = w2, no contradiction

ffxg; fw1;w2gg make F is (TZ [TUF)-satisfiable

Outline

Lazy SMT solvers

Theories and SMTLIB

Nelson-Oppen Approach

Symbolic Execution

Further readings

Testing

I Most common form of software validation
I Explores only one possible execution at a time
I For each new value, run a new test.
I On a 32 bit machine, if(i==2014) bug() would require 232

different values to make sure there is no bug.
I The idea in symbolic testing is to associate symbolic values

to the variables

Symbolic Testing

I Main idea by JC. King in “Symbolic Execution and Program
Testing” in the 70s

I Use symbolic values instead of concrete ones
I Along the path, maintain a Path Constraint (PC) and a

symbolic state (�)
I PC collects constraints on variables’ values along a path,
I � associates variables to symbolic expressions,
I We get concrete values if PC is satisfiable
I The program can be run on these values
I Negate a condition in the path constraint to get another path

Symbolic Execution: a simple example

I Can we get to the ERROR? explore using SSA forms.
I Useful to check array out of bounds, assertion violations, etc.
1foo(int x,y,z){
2 x = y - z;
3 if(x==z){
4 z = z - 3;
5 if (4*z < x + y){
6 if (25 > x + y) {
7 ...
8 }
9 else{

10 ERROR ;
11 }
12 }
13 }
14 ...

PC1 = true
PC2 = PC1 x 7! x0; y 7! y0; z 7! z0
PC3 = PC2 ^ x1 = y0 � z0 x 7! (y0 � z0); y 7! y0; z 7! z0
PC4 = PC3 ^ x1 = z0 x 7! (y0 � z0); y 7! y0; z 7! z0
PC5 = PC4 ^ z1 = z0 � 3 x 7! (y0 � z0); y 7! y0; z 7! (z0 � 3)
PC6 = PC5 ^ 4 � z1 < x1 + y0 x 7! (y0 � z0); y 7! y0; z 7! (z0 � 3)

PC10 = PC6 ^ 25 � x1 + y0 x 7! (y0 � z0); y 7! y0; z 7! (z0 � 3)

PC = (x1 = y0 � z0 ^ x1 = z0 ^ z1 = z0 � 3 ^ 4 � z1 < x1 + y0 ^ 25 � x1 + y0)

Check satisfiability with a solver (e.g., http://rise4fun.com/Z3)

http://rise4fun.com/Z3

Symbolic execution today

I Leverages on the impressive advancements of SMT solvers
I Modern symbolic execution frameworks are not purely

symbolic and are often dynamic: Sage, Klee (open source),
Pex:
I They can follow a concrete execution while collecting

constraints along the way, or
I They can treat some of the variables concretely, and some

other symbolically
I This allows them to scale, to handle closed code or complex

queries

https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf
https://klee.github.io/
https://www.microsoft.com/en-us/research/publication/pex-white-box-test-generation-for-net/

Outline

Lazy SMT solvers

Theories and SMTLIB

Nelson-Oppen Approach

Symbolic Execution

Further readings

Further readings

A. R. Bradley and Z. Manna.
(chap 10) The calculus of computation: decision procedures with applications to
verification.
Springer Science & Business Media, 2007.

C. Cadar, D. Dunbar, D. R. Engler, et al.
Klee: unassisted and automatic generation of high-coverage tests for complex
systems programs.
In OSDI, volume 8, pages 209–224, 2008.

L. De Moura and N. Bjørner.
Satisfiability modulo theories: introduction and applications.
Communications of the ACM, 54(9):69–77, 2011.

P. Godefroid, M. Y. Levin, and D. Molnar.
Sage: whitebox fuzzing for security testing.
Queue, 10(1):20–27, 2012.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
Solving sat and sat modulo theories: From an abstract
davis–putnam–logemann–loveland procedure to dpll(t).
J. ACM, 53(6):937–977, Nov. 2006.

	Lazy SMT solvers
	Theories and SMTLIB
	Nelson-Oppen Approach
	Symbolic Execution
	Further readings

