Software Verification
 Satisfiability Modulo Theory and applications
 Symbolic representations II

Ahmed Rezine
IDA, Linköpings Universitet

Spring 2021

Outline

Lazy SMT solvers

Theories and SMTLIB

Nelson-Oppen Approach

Symbolic Execution

Further readings

Introduction

Originates from automating proof-search for first order logic.

- Variables: x, y, z, \ldots
- Constants: a, b, c, \ldots
- N -ary functions: f, g, h, \ldots
- N -ary predicates: p, q, r, \ldots
- Atoms: $\perp, \top, p\left(t_{1}, \ldots, t_{n}\right)$
- Literals: atoms or their negation
- A FOL formula is a literal, boolean combinations of formulas, or quantified (\exists, \forall) formulas.
Evaluation of formula φ, with respect to interpretation I over non-empty (possibly infinite) domains for variables and constants gives true or false (resp. $I \vDash \varphi$ or $I \not \vDash \varphi$)

Satisfiability and Validity

A formula φ is:

- satisfiable if $I \models \varphi$ for some interpretation I
- valid if $I \models \varphi$ for all interpretations I

Satisfiability of FOL is undecidable. Instead, target decidable or domain-specific fragments.

Introduction

Given a quantifier free FOL formula and a combination of theories, is there an interpretation to the free variables that makes the formula true?

$$
\varphi \triangleq g(a)=c \wedge(f(g(a)) \neq f(c) \vee g(a)=d) \wedge c \neq d
$$

- EUF: Equality over Uninterpreted functions
- Satisfiable?

Introduction

Given a quantifier free FOL formula and a combination of theories, is there an interpretation to the free variables that makes the formula true?

$$
\begin{aligned}
\varphi \triangleq & \left(x_{1} \geq 0\right) \wedge\left(x_{1}<1\right) \\
& \wedge\left(\left(f\left(x_{1}\right)=f(0)\right) \Rightarrow\left(\operatorname{rd}\left(w r\left(P, x_{2}, x_{3}\right), x_{2}+x_{1}\right)=x_{3}+1\right)\right.
\end{aligned}
$$

Introduction

Given a quantifier free FOL formula and a combination of theories, is there an interpretation to the free variables that makes the formula true?

$$
\begin{aligned}
\varphi \triangleq & \left(x_{1} \geq 0\right) \wedge\left(x_{1}<1\right) \\
& \wedge\left(\left(f\left(x_{1}\right)=f(0)\right) \Rightarrow\left(r d\left(w r\left(P, x_{2}, x_{3}\right), x_{2}+x_{1}\right)=x_{3}+1\right)\right.
\end{aligned}
$$

- Linear Integer Arithmetic (LIA)

Introduction

Given a quantifier free FOL formula and a combination of theories, is there an interpretation to the free variables that makes the formula true?

$$
\begin{aligned}
\varphi \triangleq & \left(x_{1} \geq 0\right) \wedge\left(x_{1}<1\right) \\
& \wedge\left(\left(f\left(x_{1}\right)=f(0)\right) \Rightarrow\left(\operatorname{rd}\left(w r\left(P, x_{2}, x_{3}\right), x_{2}+x_{1}\right)=x_{3}+1\right)\right.
\end{aligned}
$$

- Linear Integer Arithmetic (LIA)
- Equality over Uninterpreted functions (EUF)
- Arrays (A)

Introduction

Given a quantifier free FOL formula and a combination of theories, is there an interpretation to the free variables that makes the formula true?

$$
\begin{aligned}
\varphi \triangleq & \left(x_{1} \geq 0\right) \wedge\left(x_{1}<1\right) \\
& \wedge\left(\left(f\left(x_{1}\right)=f(0)\right) \Rightarrow\left(r d\left(w r\left(P, x_{2}, x_{3}\right), x_{2}+x_{1}\right)=x_{3}+1\right)\right.
\end{aligned}
$$

- LIA: $x_{1}=0$
- EUF: $f\left(x_{1}\right)=f(0)$
- A: $\operatorname{rd}\left(w r\left(P, x_{2}, x_{3}\right), x_{2}\right)=x_{3}$
- Bool: $\operatorname{rd}\left(w r\left(P, x_{2}, x_{3}\right), x_{2}\right)=x_{3}+1$
- LIA: \perp

Introduction

- Sometimes more natural to express in logics other than propositional logic
- SMT decide satisfiablity of ground FO formulas wrt. background theory
- Many applications: Model checking, predicate abstraction, symbolic execution, scheduling, test generation, ...

Introduction: from SAT to SMT

- Eager approach with "bit-blasting" (UCLID):
- Encode SMT formula in propositional logic
- Use off-the-shelf SAT solver
- Still dominant for bit-vector arithmetic
- Lazy-approach (CVC4, MathSat, Yices, Z3, ...)
- Combine SAT (CDCL) and theory solvers
- Sat-solver enumerates models for the boolean part
- Theory solvers check satisfiability in the theory

Eager approach e.g.: EUF

remove terms $f(a), f(b), f(c)$ by replacing with fresh constants A, B, C.

- add $a=b \Rightarrow A=B, a=c \Rightarrow A=C$ and $b=c \Rightarrow B=C$
- for n constants use logn bits to encode value of each constant a, b, \ldots
- each $a=b$ is replaced by $P_{a, b}$
- add $P_{a, b} \wedge P_{b, c} \Rightarrow P_{a, c}$

Outline

Lazy SMT solvers

Theories and SMTLIB

Nelson-Oppen Approach

Symbolic Execution

Further readings

Lazy SMT solvers

- Restrict theory solver to conjunctions of constraints
- Convert to disjunctive normal form and check one conjunction at a time
- Or use Sat to enumerate conjuncts

Basic lazy SMT

```
\psi = to_cnf(\varphi);
while(true){
    res, M = check_SAT ( }\psi)\mathrm{ ;
    if( res){
        MT = to_theory (M);
            res = check_theory ( }\mp@subsup{M}{T}{}\mathrm{ );
            if(res)
            return SAT;
            else
            \psi^=\negM;
        }else
        return UNSAT;
    }
```


Integrating SMT and SAT

$$
(1: g(a)=c) \wedge((\overline{2}: f(g(a)) \neq f(c)) \vee(3: g(a)=d)) \wedge(\overline{4}: c \neq d)
$$

- $M=\{1, \overline{2}, \overline{4}\}$
- $N=\{(1: g(a)=c),(\overline{2}: f(g(a)) \neq f(c)),(\overline{4}: c \neq d)\}$ is unsat
- add $\{\overline{1} \vee 2 \vee 4\}$
- $M=\{1,2,3, \overline{4}\}$
- $N=\{(1: g(a)=c),(2: f(g(a))=f(c)),(3: g(a)=d),(\overline{4}:$
$c \neq d)\}$
- add $\{\overline{1} \vee \overline{2} \vee \overline{3}, \overline{4}\}$
- SAT solver declares unsat

Integrating SMT and SAT

$$
\begin{array}{lll}
\psi \triangleq & & \psi_{\mathbb{B}} \triangleq \\
c_{1} & : & \neg\left(2 x_{2}-x_{3}>2\right) \vee\left(x_{1}+x_{3} \leq 5\right) \\
c_{2} & : & \neg\left(x_{1}-x_{3} \leq 5\right) \vee\left(x_{1}-x_{5} \leq 1\right) \\
c_{3} & : & \neg\left(3 x_{1}-2 x_{2} \leq 3\right) \vee \neg\left(x_{1}-x_{3} \leq 5\right) \\
c_{4} & : & \neg\left(3 x_{1}-x_{3} \leq 6\right) \vee \neg \neg\left(x_{1}+x_{3} \leq 5\right) \\
c_{5} & : & \neg A_{21} \vee A_{22} \\
c_{6} & :\left(x_{1}+x_{3} \leq 5\right) \vee\left(3 x_{1}-2 x_{2} \leq 3\right) & \neg A_{31} \vee \neg A_{32} \\
c_{7} & :\left(x_{2}-x_{4} \leq 6\right) \vee \neg\left(x_{1}+x_{3} \leq 5\right) & \neg A_{41} \vee \neg A_{42} \\
c_{7} & \left(x_{1}+x_{3} \leq 5\right) \vee\left(x_{3}=3 x_{5}+4\right) \vee \neg\left(x_{1}-x_{3} \leq 5\right) & A_{51} \vee A_{31} \\
& A_{61} \vee \neg A_{62} \\
A_{71} \vee A_{72} \vee \neg A_{73}
\end{array}
$$

- $M=\left\{A_{12}, A_{21}, \neg A_{31}, \neg A_{41}, A_{61}, A_{72}\right\}$
- $M_{T}=\left\{\left(x_{1}+x_{3} \leq 5\right),\left(x_{1}-x_{5} \leq 1\right), \neg\left(3 x_{1}-2 x_{2} \leq 3\right)\right.$, $\left.\neg\left(3 x_{1}-x_{3} \leq 6\right),\left(x_{2}-x_{4} \leq 6\right),\left(x_{3}=3 x_{5}+4\right)\right\}$
- Theory solver: M_{T} is UNSAT. Add $\neg M$ to ψ

Outline

Lazy SMT solvers

Theories and SMTLIB

Nelson-Oppen Approach

Symbolic Execution

Further readings

SMT competition and SMTLIB

- Drive development, since 2005
- $15^{\text {th }}$ instance at https://smt-comp.github.io/2020
- Papers at SAT, CADE, CAV, FMCAD, TACAS, ...
- SMTLIB key initiative to promote common input and output for SMT solvers, benchmarks, tutorials, ...
- at http://smtlib.cs.uiowa.edu/

Equality with uninterpreted Functions (EUF)

- Consider $a *(f(b)+f(c))=d \wedge b *(f(a)+f(c)) \neq d \wedge a=b$
- Formula is unsat, could be abstracted with
- $h(a, g(f(b), f(c)))=d \wedge h(b, g(f(b), f(c))) \neq d \wedge a=b$
- EUF used to abstracted non-supported theories such as non-linear multiplication or ALUs in circuits.

Arithmetic

Several restricted fragments, whether real or integer variables:

- Bounds $x \sim k$ with $\sim \in\{<, \leq,=, \geq,>\}$
- Difference logic $x-y \sim k$ with $\sim \in\{<, \leq,=, \geq,>\}$
- UTVPI $\pm x \pm y \sim k$ with $\sim \in\{<, \leq,=, \geq,>\}$
- Linear Arithmetic $x+2 y-3 z \leq 2$
- Non-linear arithmetic $x y-4 x y^{2}+2 z \leq 2$

Arrays

- Special functions read and write
- Axioms:
- $\forall a \forall i \forall v(\operatorname{read}(w r i t e(a, i, v), i)=v)$
$-\forall a \forall i \forall j \forall v(i \neq j \Rightarrow \operatorname{read}(w r i t e(a, i, v), j))=\operatorname{read}(a, j))$
- Used for software (arrays) and hardware (memories) verification

Bit vectors

- Operations on vectors of bits
- String like: concatenation, extraction, ...
- Logical: bit-wise or, not, and...
- Arithmetic: add, substract, multiply, ...
- $a[0: 1] \neq b[0: 1] \wedge(a \mid b)=c \wedge c[0]=0 \wedge a[1]+b[1]=0$

Outline

Lazy SMT solvers
 Theories and SMTLIB

Nelson-Oppen Approach

Symbolic Execution

Further readings

Combining Decision Procedures

$$
x=y+1 \wedge a=\operatorname{write}(b, x+1,0) \wedge(\operatorname{read}(a, y+z)=1 \vee f(x+1) \neq f(z))
$$

Such formulas can naturally arise in software verification. Need to reason over:

- Linear arithmetic
- Arrays
- uninterpreted functions
- Under some restrictions, Nelson-Oppen allows to combine individual theories in order to answer combinations like above.
- We can consider conjunctions of literals (put in dnf)

Example

$$
1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

- $\ln T_{\mathbb{Z}} 1 \leq x \wedge x \leq 2$ implies $x \in\{1,2\}$
- So $f(x)=f(1)$ or $f(x)=f(2)$

Non-deterministic Nelson-Oppen

- Given T_{1}, T_{2} such that $\Sigma_{1} \cap \Sigma_{2}=\{=\}$
- Where each satisfiable formula in T_{1} or in T_{2} is also satisfiable over an interpretation with an infinite domain (stably infinite)
- Then we can combine two decision procedures $P 1, P 2$ for $T_{1} \cup T 2$ as follows.

Non-deterministic Nelson-Oppen

Phase 1: idea

- First transform any $\left(T_{1} \cup T_{2}\right)$-conjunction F into the conjunction of a T_{1}-formulas and a T_{2}-formula
- For this, purify the formula by introducing new variables and conjunctions each time a function or a predicate mixes terms from different theories

Non-deterministic Nelson-Oppen

Phase 1: example1

- $1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)$
- introduce w_{1}, w_{2} to obtain $\left(1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2\right)$ and $\left(f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right)\right)$
- $\left(1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2\right)$ is in $T_{\mathbb{Z}}$, and
- $\left(f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right)\right)$ is in $T_{U F}$

Non-deterministic Nelson-Oppen

Phase 1: example2

- $f(x)=x+y \wedge x \leq y+z \wedge x+z \leq y \wedge y=1 \wedge f(x) \neq f(2)$
- replace $f(x)=x+y$ by $w_{1}=x+y \wedge w_{1}=f(x)$
- replace $f(x) \neq f(2)$ by $f(x) \neq f\left(w_{2}\right) \wedge w_{2}=2$
- This gives the equisatisfiable conjunction $\left(w_{1}=x+y \wedge x \leq y+z \wedge x+z \leq y \wedge y=1 \wedge w_{2}=2\right)$ in $T_{\mathbb{Z}}$ and $\left(w_{1}=f(x) \wedge f(x) \neq f\left(w_{2}\right)\right.$ in $T_{U F}$

Non-deterministic Nelson-Oppen

Phase 2: guess and check

- let $V=\operatorname{free}\left(F_{1}\right) \cap \operatorname{free}\left(F_{2}\right)$ where $F_{1} \wedge F_{2}$ obtained after purification
- $F_{1} \wedge F_{2}$ is satisfiable iff
- there is an equivalence relation \sim over V s.t
- $\alpha=\bigwedge_{(u \sim v)} u=v \wedge \bigwedge_{(u \nsim v)} u \neq v$, and
- both $F_{1} \wedge \alpha$ and $F_{2} \wedge \alpha$ are satisfiable
- otherwise $F_{1} \wedge F_{2}$ is unsatisfiable

Non-deterministic Nelson-Oppen

Phase 2: example 1

- Consider $F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)$
- with $F_{\mathbb{Z}}: 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2$, and
- FUF: $f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right)$

The shared variables are $\left\{x, w_{1}, w_{2}\right\}$ which gives the following possible equivalences

- $\left\{\left\{x, w_{1}, w_{2}\right\}\right\}$ unsat because $x=w_{1}$ and $f(x) \neq f\left(w_{1}\right)$
- $\left\{\left\{x, w_{1}\right\},\left\{w_{2}\right\}\right\}$ unsat because $x=w_{1}$ and $f(x) \neq f\left(w_{1}\right)$
- $\left\{\left\{x, w_{2}\right\},\left\{w_{1}\right\}\right\}$ unsat because $x=w_{2}$ and $f(x) \neq f\left(w_{2}\right)$
- $\left\{\{x\},\left\{w_{1}, w_{2}\right\}\right\}$ unsat because $w_{1}=w_{2}$ and $w_{1}=1 \wedge w_{2}=2$
- $\left\{\{x\},\left\{w_{1}\right\},\left\{w_{2}\right\}\right\}$ unsat because $x=1 \vee x=2$ and $w_{1}=1 \wedge w_{2}=2$
So F is $\left(T_{\mathbb{Z}} \cup T_{U F}\right)$-unsatisfiable

Non-deterministic Nelson-Oppen

Incremental:

- Consider

$$
\begin{aligned}
& F: f(x)=x+y \wedge x \leq y+z \wedge x+z \leq y \wedge y=1 \wedge f(x) \neq f(2) \\
& F_{\mathbb{Z}}: w_{1}=x+y \wedge x \leq y+z \wedge x+z \leq y \wedge y=1 \wedge w_{2}=2 \\
& F_{U F}: w_{1}=f(x) \wedge f(x) \neq f\left(w_{2}\right)
\end{aligned}
$$

- shared variables $\left\{x, w_{1}, w_{2}\right\}$.

1. attempt $x=w_{1}$, gives $y=0$ contradicts $y=1$, so $x \neq w_{1}$
2. $F_{\mathbb{Z}} \wedge x \neq w_{1}$ and $F_{U F} x \neq w_{1}$ are satisfiable
3. attempt $x=w_{2}$, but $f(x) \neq f\left(w_{2}\right)$ so $x \neq w_{2}$
4. $F_{\mathbb{Z}} \wedge x \neq w_{1} \wedge x \neq w_{2}$ and $F_{U F} x \neq w_{1} \wedge x \neq w_{2}$ are satisfiable
5. attempt $w_{1}=w_{2}$, no contradiction
$\left\{\{x\},\left\{w_{1}, w_{2}\right\}\right\}$ make F is $\left(T_{\mathbb{Z}} \cup T_{U F}\right)$-satisfiable

Outline

Lazy SMT solvers
 Theories and SMTLIB
 Nelson-Oppen Approach

Symbolic Execution

Further readings

Testing

- Most common form of software validation
- Explores only one possible execution at a time
- For each new value, run a new test.
- On a 32 bit machine, if ($i==2014$) bug() would require 2^{32} different values to make sure there is no bug.
- The idea in symbolic testing is to associate symbolic values to the variables

Symbolic Testing

- Main idea by JC. King in "Symbolic Execution and Program Testing" in the 70s
- Use symbolic values instead of concrete ones
- Along the path, maintain a Path Constraint (PC) and a symbolic state (σ)
- PC collects constraints on variables' values along a path,
- σ associates variables to symbolic expressions,
- We get concrete values if $P C$ is satisfiable
- The program can be run on these values
- Negate a condition in the path constraint to get another path

Symbolic Execution: a simple example

- Can we get to the ERROR? explore using SSA forms.
- Useful to check array out of bounds, assertion violations, etc.

$P C_{1}=$ true	
$P C_{2}=P C_{1} \wedge$	$x \mapsto x_{0}, y \mapsto y_{0}, z \mapsto z_{0}$
$P C_{3}=P C_{2} \wedge x_{1}=y_{0}-z_{0}$	$x \mapsto\left(y_{0}-z_{0}\right), y \mapsto y_{0}, z \mapsto z_{0}$
$P C_{4}=P C_{3} \wedge x_{1}=z_{0}$	$x \mapsto\left(y_{0}-z_{0}\right), y \mapsto y_{0}, z \mapsto z_{0}$
$P C_{5}=P C_{4} \wedge z_{1}=z_{0}-3$	$x \mapsto\left(y_{0}-z_{0}\right), y \mapsto y_{0}, z \mapsto\left(z_{0}-3\right)$
$P C_{6}=P C_{5} \wedge 4 * z_{1}<x_{1}+y_{0}$	$x \mapsto\left(y_{0}-z_{0}\right), y \mapsto y_{0}, z \mapsto\left(z_{0}-3\right)$

$$
P C_{10}=P C_{6} \wedge 25 \leq x_{1}+y_{0} \quad x \mapsto\left(y_{0}-z_{0}\right), y \mapsto y_{0}, z \mapsto\left(z_{0}-3\right)
$$

$$
P C=\left(x_{1}=y_{0}-z_{0} \wedge x_{1}=z_{0} \wedge z_{1}=z_{0}-3 \wedge 4 * z_{1}<x_{1}+y_{0} \wedge 25 \leq x_{1}+y_{0}\right)
$$

Check satisfiability with a solver (e.g., http://rise4fun.com/Z3)

Symbolic execution today

- Leverages on the impressive advancements of SMT solvers
- Modern symbolic execution frameworks are not purely symbolic and are often dynamic: Sage, Klee (open source), Pex:
- They can follow a concrete execution while collecting constraints along the way, or
- They can treat some of the variables concretely, and some other symbolically
- This allows them to scale, to handle closed code or complex queries

Outline

> Lazy SMT solvers

> Theories and SMTLIB

> Nelson-Oppen Approach

> Symbolic Execution

Further readings

Further readings

A. R. Bradley and Z. Manna.
(chap 10) The calculus of computation: decision procedures with applications to verification.
Springer Science \& Business Media, 2007.

C. Cadar, D. Dunbar, D. R. Engler, et al.

Klee: unassisted and automatic generation of high-coverage tests for complex systems programs.
In OSDI, volume 8, pages 209-224, 2008.
L. De Moura and N. Bjørner.

Satisfiability modulo theories: introduction and applications.
Communications of the ACM, 54(9):69-77, 2011.

P. Godefroid, M. Y. Levin, and D. Molnar.

Sage: whitebox fuzzing for security testing.
Queue, 10(1):20-27, 2012.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli.

Solving sat and sat modulo theories: From an abstract davis-putnam-logemann-loveland procedure to dpll(t).
J. ACM, 53(6):937-977, Nov. 2006.

