
Software Verification

Symbolic representations

Ahmed Rezine

IDA, Linköpings Universitet

Spring 2023

Symbolic Model Checking

In these two lectures we discuss:
I symbolic techniques to manipulate sets of states instead of

individual states as in explicit model checking
I how such techniques can concisely manipulate (huge, even

infinite) state spaces
I today: symbolic (un)bounded model checking with NuSMV

Symbolic Model Checking (cont.)

I the main idea is to use predicates to denote sets of states of
the Kripke Structure

I the predicates have to be efficiently represented and
manipulated. Today:
I using Binary Decision Diagrams (BDDs)
I using SAT sentences

Outline

Binary Decision Diagrams and verification

SAT solving and verification

NuSMV

Outline

Binary Decision Diagrams and verification

SAT solving and verification

NuSMV

Binary Decision Trees
A Binary Decision Tree is a rooted directed tree with terminal and
non terminal vertices.
I a non terminal vertex v has a variable var(v) and two

successors low(v) and high(v).
I a terminal vertex v has a value value(v) in f0; 1g

a1 , b1 ^ a2 , b2

Binary Decision Diagrams (BDDs)

A BDD is a rooted, directed acyclic graph with terminal and
non-terminal vertices. value(v), var(v), low(v) and high(v) are
defined as for binary decision trees. A boolean function
fv (x1; : : : xn) is associated every vertex v .
I if v is a terminal vertex:

I if value(v) = 1 then fv (x1; : : : xn) = 1
I if value(v) = 0 then fv (x1; : : : xn) = 0

I if v is a non terminal vertex with var(v) = xi then
fv (x1; : : : xn) = (:xi ^ flow(v)(x1; : : : xn)) _ (xi ^ fhigh(v)(x1; : : : xn))

BDDs Canonicity

I If it is the case that:
1. all BDDs have the same order on the variables along each path
2. each BDD has no redundant vertices or isomorphic subtrees

I then two boolean functions are equivalent iff two
corresponding BDDs are isomorphic

BDDs Canonicity: the Reduce Algorithm:

I Starting from a BDD, repeatedly:
1. Eliminating all terminal vertices but one of each value and

redirecting arcs that used to point to deleted vertices to the
kept terminal vertex with the same value

2. Eliminating duplicate non terminals with the same variable,
and same low and high arcs (and redirect arcs)

3. If low(v) = high(v) eliminating v and redirecting arcs to
low(v).

I Then we obtain (linear in the size of the original BDD) a
canonical representation of boolean formulas

BDDs Canonicity (cont.)

BDDs Order

Operations on BDDs: the Apply Algorithm

Given a binary operation op on boolean formulas f ; g :
I The Shanon Expansion of f with respect to variable x is

f = :x :fjx 0 + x :fjx 1

I This also applies to the result of (f op g), i.e.,
(f op g) = :x :(fjx 0 op gjx 0) + x :(fjx 1 op gjx 1)

The Apply Algorithm

Starting from the roots u; v of the BDDs of f ; g :
I u; v are terminal vertices: (f op g) = value(u) op value(v)
I x = var(u) = var(v),

(f op g) = :x :(fjx 0 op gjx 0) + x :(fjx 1 op gjx 1)
I x = var(u) < var(v), then g does not depend on x :

(f op g) = :x :(fjx 0 op g) + x :(fjx 1 op g)
I x = var(v) < var(u), then f does not depend on x :

(f op g) = :x :(f op gjx 0) + x :(f op gjx 1)

The Apply Algorithm

I Use dynamic programming and memoize for efficiency
I There is a quadratic number of results to store
I The result is not necessarily canonical, may need to use

reduce afterwards

Other operations on BDDs

I restrict: compute fjx 0. For every node v with var(v) = x ,
redirect each incoming edge to low(v) and delete v .

I exists: compute 9x :f : use 9x :f = fx 0 + fx 1, restrict and
apply.

Successors and predecessors

R(v ; v 0) =
v 0

0 = :v0
^ v 0

1 = v0 � v1
^ v 0

2 = (v0 ^ v1)� v2

!

I f000; 010; 001; 011g captured by (:v0).
(9v ::v0 ^ R(v ; v 0)) = v 00 captures the
successors, i.e., f100; 110; 101; 111g.

I Successors of f (v): 9v :f (v) ^ R(v ; v 0)
I f010; 110; 011; 111g captured by (v 01).

(9v 0:v 01 ^ R(v ; v 0)) = (v0 � v1) captures
the predecessors, i.e.,
f010; 011; 100; 101g.

I Predecessors of f (v 0): 9v 0:f (v 0)^R(v ; v 0)

(EX f) = (9v 0:f (v 0) ^ R(v ; v 0))

Fixpoints and Symbolic Model Checking

(EX f) = (9v 0:f (v 0) ^ R(v ; v 0))

Data: monotonic �

Result: smallest fixpoint of �

Q = � (false);
Q0 = false;
while Q 6= Q0 do

Q0 = Q;
Q = � (Q0);

return Q;

E[f1U f2] is the least fixpoint of
� (Z) = f2 _ (f1 ^ (EX Z))

Data: monotonic �

Result: greatest fixpoint of �

Q = � (true);
Q0 = true;
while Q 6= Q0 do

Q0 = Q;
Q = � (Q0);

return Q;

EG f is the greatest fixpoint of
� (Z) = f ^ (EX Z)

I Other CTL formulas can be rewritten using these

Outline

Binary Decision Diagrams and verification

SAT solving and verification

NuSMV

Basics

Sat solvers usually take propositional formulas written in
conjunctive normal (cnf):
I variables: propositional variables, e.g., x ; y ; z ; : : :
I literals: variables or their negations, e.g., x ; x ; y ; : : :
I clause: disjunction of literals, e.g., (x _ y)
I cnf formula: conjunction of clauses, e.g.,

(x _ y) ^ (y _ z) ^ (z) ^ (x)
I a (partial) variable assignment associates (some of the)

variables to Boolean values in f0; 1g

Basics: a well known NP-problem

Given a propositional formula (usually in cnf), does there exist a
satisfying assignment (i.e., a variable assignment for which the
formula evaluates to true)?
I x 7! 1; y 7! 1; z 7! 0 is a satisfying assignment for

(x _ y) ^ (y _ z) ^ (z). The formula is satisfiable
I (x _ y)^ (y _ z)^ (z)^ (x) has no satisfying assignment, it is

unsatisfiable
I Success story with applications in hardware/software model

checking, planning, combinatorial design, test pattern
generation, protocol design, bioinformatics, etc.

I From 100 variables and 200 constraints in early 90s to more
than a 1,000,000 variables and 5,000,000 constraints

Resolution

(w1 _ x) (w2 _ x)
(w1 _ w2)

I (w1 _ w2) is the resolvant obtained by resolving
(w1 _ x) ^ (w2 _ x) on variable x .

I Eliminate one variable at a time. To eliminate a variable x ,
first add all resolvants that can be obtained by resolving on x .

I Sound (if states unsat then indeed unsat) and complete (if
unsat then will state unsat) proof rule for propositional logic.

Resolution

The formula (x _ y) ^ (y _ z) ^ (x _ z)

x y
(x _ y) (z _ y) (z)
(y _ z) (y _ z)
(x _ z) (z)
(x _ z)

is satisfiable (sat for short).

Resolution

The formula (x _ y) ^ (y _ z) ^ (x _ z) ^ (z)

(x _ y) (y _ z)
(x _ z) (x _ z)

(z) (z)
()

is unsatisfiable (unsat for short)..

Unit propagation

I A unit is a clause where there is one unassigned literal while
all other literals are assigned 0.

I The only chance for the current assignment to satisfy the
formula is to assign 1 to unassigned literals in unit clauses

I (x) ^ (x _ y) ^ (y _ z _ s) ^ (z _ y _ x) ^ : : :

I implied assignment: x = 1, antecedent (x)
I implied assignment: y = 1, antecedent (x _ y)
I implied assignment: z = 1, antecedent (z _ y _ x)
I implied assignment: s = 1, antecedent (y _ z _ s)

Davis-Putnam-Logemann-Loveland (DPLL)

I decides satisfiability for sat-cnf problems
I introduced in early 60s
I basis of modern sat solvers
I idea: alternate unit propagation, choosing a value for some

variable, and recursively checking the result, if does not give
satisfying assignment then backtrack (remove) with opposit
value

Davis-Putnam-Logemann-Loveland (DPLL)

Algorithm 1: DPLL-recursive(', �)
Input: ': cnf formula, �: partial assignment
Output: UNSAT or satisfying assignment
('; �) := UnitPropagate('; �);
if ' contains an empty clause then

return UNSAT ;
if ' has no clauses left then

Output �;
return SAT;

l := a literal not assigned by �;
if (DPLL-recursive('[l]; � [flg)) then

return SAT ;
return DPLL-recursive('[:l]; � [f:lg);

DPLL, Example

' = (x _ y) ^ (y _ z) ^ (x _ y _ z) ^ (x _ z)
level decision formula
0 x = 1 (1 _ y) ^ (y _ z) ^ (1 _ y _ z) ^ (1 _ z)
1 y = 1 (1 _ 1) ^ (1 _ z) ^ (1 _ 1 _ z) ^ (1 _ z)
1 y = 0 (1 _ 0) ^ (0 _ z) ^ (1 _ 0 _ z) ^ (1 _ z)
. . .

DPLL, Example 2

' = (a _ b _ d) ^ (a _ b _ e) ^ (b _ d _ e) ^ (a _ b _ c _ d) ^ (a _
b _ c _ d) ^ (a _ b _ c _ e) ^ (a _ b _ c _ e)

Modern solvers

What made it possible?

I Clause learning with non chronological backtracking
I search restarts
I lazy data-structures
I ...

Clause learning

I capture “cause” of encountered conflict as a clause
I the conflict clause is added to the formula
I if deciding x = 1 and y = 0 led to unsat then remember this

by adding (x _ y) to the formula
I learn “reasons” of discovered inconsistencies in order to avoid

them in the future

Conflict clauses

I Current assignment: x9 = 0@1; x10 = 0@3; x11 = 0@3; :::
I Current decision: x1 = 1@6
w1 = (x1 _ x2)
w2 = (x1 _ x3 _ x9)
w3 = (x2 _ x3 _ x4)
w4 = (x4 _ x5 _ x10)
w5 = (x4 _ x6 _ x11)
w6 = (x5 _ x6)
w7 = (x1 _ x7 _ x12)
w8 = (x1 _ x8)
w9 = (x7 _ x8 _ x13)
::::

x1 = 1@6

x2 = 1@6

x10 = 0@3

x4 = 1@6

x5 = 1@6

x3 = 1@6 x6 = 1@6

x9 = 0@1 x11 = 0@3

?
w1 w3 w6 w6

w2 w3 w5 w6

w4

w2 w5

Implication graph

I source nodes of implication graph can be used as a conflict
clause

I here, (x1 _ x9 _ x10 _ x11) can be added as a conflict clause
I better clauses with “unique implication point”
I here, add (x4 _ x10 _ x11)

Bounded Model Checking

I an alternative approach is to encode erroneous executions as
sat formulas, and

I to use sat solvers to establish their satisfiability
I this approach turns out to scale very well, but it can only

guarantee correctness up to a given bound
I the approach leverages on the tremendous development in sat

solvers’ technology

BMC(M; p; k) = Init(s0) ^
k�1̂

i=0
R(si ; si+1) ^

k_
i=0

:p(si)

Outline

Binary Decision Diagrams and verification

SAT solving and verification

NuSMV

Introduction

I NuSMV is an open source symbolic model checker
I the latest version is 2.6 and you can get it from

http://nusmv.fbk.eu
I It uses both BDD and SAT representations
I Performs CTL and LTL model checking
I Can capture (A)Synchronous finite models
I allows for interactive and random simulation

http://nusmv.fbk.eu

Synchronous: Single Process Example

1 MODULE main
2 VAR
3 request : boolean ;
4 state : {ready ,busy };
5 ASSIGN
6 init(state) := ready ;
7 next(state) := case
8 state = ready & request : busy;
9 TRUE : {ready ,busy };

10 esac;
11 SPEC
12 AG(request -> AF state = busy)

/courses/TDDE34/NuSMV/share/nusmv/examples/smv-dist/
short.smv

/courses/TDDE34/NuSMV/share/nusmv/examples/smv-dist/short.smv
/courses/TDDE34/NuSMV/share/nusmv/examples/smv-dist/short.smv

Synchronous: Binary Counter

1 MODULE main
2 VAR
3 bit0 : counter_cell (TRUE);
4 bit1 : counter_cell (bit0. carry_out);
5 bit2 : counter_cell (bit1. carry_out);
6
7 SPEC
8 AG AF bit2. carry_out
9

10
11 MODULE counter_cell (carry_in)
12 VAR
13 value : boolean ;
14 ASSIGN
15 init(value) := FALSE ;
16 next(value) := value xor carry_in ;
17 DEFINE
18 carry_out := value & carry_in ;

Simulation

1 MODULE main
2 VAR
3 request : boolean ;
4 state : {ready ,busy };
5 ASSIGN
6 init(state) := ready ;
7 next(state) := case
8 state = ready & request : busy;
9 TRUE : {ready ,busy };

10 esac;
11 SPEC
12 AG(request -> AF state = busy)

> NuSMV -int short.smv
NuSMV> go
NuSMV> pick_state -r
NuSMV> print_current_state -v
NuSMV> simulate -r -k 3
NuSMV> show_traces -v
NuSMV> simulate -i -k 1

Verification

I Use SPEC for CTL specifications
I Use LTLSPEC for LTL specifications
I > NuSMV semaphore.smv
I Use fairness to ensure certain sets are visited infinitey often

(e.g. that each process is scheduled, using “running”)

Example: counter

1 -- A simple counter
2 MODULE main
3 VAR
4 y : 0..15;
5
6 ASSIGN
7 init(y) := 0;
8
9 TRANS

10 case
11 y = 7 : next(y) = 0;
12 TRUE : next(y) = (y + 1) mod 16;
13 esac
14
15 LTLSPEC G (y=4 -> X y=6)

NuSMV -bmc bmc_tutorial.smv
NuSMV -bmc -bmc_length 4 bmc_tutorial.smv

Example: counter

1 -- A simple counter
2 MODULE main
3 VAR
4 y : 0..15;
5
6 ASSIGN
7 init(y) := 0;
8
9 TRANS

10 case
11 y = 7 : next(y) = 0;
12 TRUE : next(y) = (y + 1) mod 16;
13 esac
14
15 LTLSPEC ! G F (y = 2)

NuSMV -bmc bmc_tutorial.smv
NuSMV -int bmc_tutorial.smv
NuSMV> go_bmc
NuSMV> check_ltlspec_bmc_onepb -k -9 -l 0
NuSMV> check_ltlspec_bmc_onepb -k -8 -l 1
NuSMV> check_ltlspec_bmc_onepb -k -9 -l 1

	Binary Decision Diagrams and verification
	SAT solving and verification
	NuSMV

